Yulong He, Ph.D., Professor
Contact info
Address: 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
Cyrus Tang Hematology Center, Soochow University
Phone: 86-(0)512-65880899-3621 (office), 86-(0)512-65880899-3616(lab)
Email: heyulong@suda.edu.cn
Education
1996-1999 Ph.D., Molecular Biology, University of Cambridge, UK
1989-1992 M.Sc., Reproductive Biology, Nanjing Agricultural University, China
Professional Experience
2011-present Professor /Principal Investigator, Cyrus Tang Hematology Center, Soochow University, China
2016-2017 Visiting Scientist, Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Muenster, Germany
2016-2016 Visiting Scientist, Korea Advanced Institute of Science and Technology, Center for Vascular Research / IBS, Korea
2005-2011 Professor /Principal Investigator, Model Animal Research Center, Nanjing University, China
2000-2005 Postdoctoral Fellow / Scientist, Molecular and Cancer Biology, Biomedicum Helsinki, University of Helsinki, Finland
1999-2000 Research Associate, Department of Pathology, University of Cambridge, UK
1992-1996 Teaching Assistant, Department of Animal Science, Nanjing Agricultural University, China
Research interests
1. Regulation of lymphatic and blood vascular network formation, remodeling, and valve development
2. Mechanism of tumor lymphangiogenesis, angiogenesis and metastasis
3. Metabolic regulation in vascular diseases and regeneration
Staff
Xudong Cao, PhD, Postdoc Researcher
Taotao Li, PhD, Postdoc Researcher
Graduate students
PhD students
Zhiliang Sun; Beibei Xu
MSc students
Jing Cui; Xin Shen; Yahui Liu; Junda Li; Kai Ding; Xinhao Yu; Xiwen Jia
Undergraduate students
Yuna Jin; Xiaomeng Wang; Xiangning Yang; Suan Lin; Zhe Liu; Xianzhi Zhou; Keyue Qi
Selected publications
1. Cao Xi#, Li Ti#, Xu Bi#, Ding K, Li W, Shen B, Chu M, Zhu D, Rui L, Shang Z, Li X, Wang Y, Zheng S, Alitalo K, Liu G, Tang J, Kubota Y, He Y*. Endothelial TIE1 restricts angiogenic sprouting to coordinate vein assembly in synergy with its homologue TIE2. ATVB (Arterioscler Thromb Vasc Biol) 2023 Jun 15. doi: 10.1161/ATVBAHA.122.318860. bioRxiv; DOI: 10.1101/2022.08.05.502976.
Discovery of a positive feedback loop between receptor tyrosine kinases TIE1/TIE2 and transcription factor COUPTFII for the coordination of the vein assembly.
2. Haijuan Jiang#, Luqing Zhang#, Xuelian Liu#, Wei Sun, Katsuhiro Kato, Chuankai Chen, Xiao Li, Taotao Li, Zhiliang Sun, Wencan Han, Fujing Zhang, Qi Xiao, Zhongzhou Yang, Junhao Hu, Zhihai Qin, Ralf H. Adams, Xiang Gao, Yulong He*. Angiocrine FSTL1 (Follistatin-Like Protein 1) Insufficiency Leads to Atrial and Venous Wall Fibrosis via SMAD3 Activation. ATVB (Arterioscler Thromb Vasc Biol) 2020. doi:10.1161/ATVBAHA.119.313901. bioRxiv 616623; doi: https://doi.org/10.1101/616623.
Heart failure resulting from the increased activation of TGFβ-SMAD3 and vascular fibrosis after the endothelial FSTL1 deficiency.
3. Chu M#, Li T#, Shen B, Cao X, Zhong H, Zhang L, Zhou F, Ma W, Jiang H, Xie P, Liu Z, Dong N, Xu Y, Zhao Y, Xu G, Lu P, Luo J, Wu Q, Alitalo K, Koh GY, Adams RH, He Y*. Angiopoietin receptor Tie2 is required for vein specification and maintenance via regulating COUP-TFII. Elife. 2016 Dec 22;5. pii: e21032. doi: 10.7554/eLife.21032.
Discovery of the crucial role of angiopoietin receptor TIE2-mediated signals in vein specification by regulating the transcription factor COUPTFII protein stability.
4. Shen B#, Shang Z#, Wang B#, Zhang L#, Zhou F#, Li T, Chu M, Jiang H, Wang Y, Qiao T, Zhang J, Sun W, Kong X, He Y*. Genetic dissection of TIE pathway in lymphatic maturation and valve development. ATVB (Arterioscler Thromb Vasc Biol) 34:1221-1230 (2014).
Requirement of angiopoietin 2 and TIE1 in remodeling lymphatic network to form collecting lymphatic vessels as well as valves.
5. Zhang L#, Zhou F#, Han W#, Shen B, Luo J, Shibuya M, He Y*. VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res 20:1319-31 (2010)-Cover paper.
Dissection of VEGFR3 kinase and ligand-binding domains in lymphangiogenesis and discovery of the mechanism underlying VEGFR3 in blood vascular development by regulating VEGFR2 activity.
6. Holopainen T#, Huang H#, Chen C#, Kim KE, Zhang L, Zhou F, Han W, Li C, Yu J, Wu J, Koh GY, Alitalo K*, He Y*. Angiopoietin-1 overexpression modulates vascular endothelium to facilitate tumor cell dissemination and metastasis establishment. Cancer Res 69:4656-64 (2009).
Discovery of a critical role of angiopoietin 1 in modulating endothelium to facilitate both hematogenous and lymphatic tumor metastasis.
7. He Y, Rajantie I, Pajusola K, Jeltsch M, Holopainen T, Yla-Herttuala S, Harding T, Jooss K, Takahashi T, Alitalo K. VEGFR-3 mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res 65:4739-46(2005).
Elucidation of the mechanism underlying VEGFR3-mediated signals in tumor spread via lymphatic sprouting and vessel dilation.
8. He Y#, Rajantie I#, Ilmonen M, Makinen T, Karkkainen MJ, Haiko P, Salven P, Alitalo K. Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res 64:3737-40 (2004).
Discovery of tumor-associated lymphangiogenesis from the preexisting lymphatic network.
9. He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T, Alitalo K. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 94:785-7 (2002).
Suppression of tumor lymphangiogenesis and metastasis to regional lymph nodes by the blockade of VEGFR-3 signaling.
10. He Y*, Smith SK, Day KA, Clark D, Licence DR, Charnock-Jones DS*. Alternative splicing of vascular endothelial growth factor (VEGF)-R1 (FLT-1) pre-mRNA is important for the regulation of VEGF activity. Mol Endocrinol 13:537-545 (1999).
Discovery of the alternative splicing of VEGFR1 pre-mRNA to generate the soluble form of VEGFR1 in placental trophoblasts for regulating VEGFA activity.
Publications
*corresponging author, #co-first author
48. Taotao Li#, Xudong Cao#, Fei Zhou#, Jing Cui, Beibei Xu, Xiujuan Li, Lena Claesson-Welsh, Taija Makinen, Yulong He*. A critical role of VEGFR2 in lymphatic tumor metastasis. bioRxiv; 2023. doi: 10.1101/2023.02.16.528814.
47. Cao Xi#, Li Ti#, Xu Bi#, Ding K, Li W, Shen B, Chu M, Zhu D, Rui L, Shang Z, Li X, Wang Y, Zheng S, Alitalo K, Liu G, Tang J, Kubota Y, He Y*. Endothelial TIE1 restricts angiogenic sprouting to coordinate vein assembly in synergy with its homologue TIE2. ATVB (Arterioscler Thromb Vasc Biol) 2023 Jun 15. doi: 10.1161/ATVBAHA.122.318860. bioRxiv; DOI: 10.1101/2022.08.05.502976.
46. Wang W, Li X, Ding X, Xiong S, Hu Z, Lu X, Zhang K, Zhang H, Hu Q, Lai KS, Chen Z, Yang J, Song H, Wang Y, Wei L, Xia Z, Zhou B, He Y, Pu J, Liu X, Ke R, Wu T, Huang C, Baldini A, Zhang M, Zhang Z. Lymphatic endothelial transcription factor Tbx1 promotes an immunosuppressive microenvironment to facilitate post-myocardial infarction repair. Immunity. 2023 Aug 15:S1074-7613(23)00332-1. doi: 10.1016/j.immuni.2023.07.019.
45. Liu X, Han M, Weng W, Li Y, Pu W, Liu K, Li X, He L, Sun R, Shen R, He Y, Liang D, Chen YH, Wang QD, Tchorz JS, Zhou B. Functional ProTracer identifies patterns of cell proliferation in tissues and underlying regulatory mechanisms. NPJ Regen Med. 2023 Aug 3;8(1):41. doi: 10.1038/s41536-023-00318-y.
44. Yuan N, Wei W, Ji L, Qian J, Jin Z, Liu H, Xu L, Li L, Zhao C, Gao X, He Y, Wang M, Tang L, Fang Y, Wang J. Young donor hematopoietic stem cells revitalize aged or damaged bone marrow niche by transdifferentiating into functional niche cells. Aging Cell. 2023 May 24:e13889. doi: 10.1111/acel.13889.
43. Qi L, Li X, Zhang F, Zhu X, Zhao Q, Yang D, Hao S, Li T, Li X, Tian T, Feng J, Sun X, Wang X, Gao S, Wang H, Ye J, Cao S, He Y, Wang H, Wei B. VEGFR-3 signaling restrains the neuron-macrophage crosstalk during neurotropic viral infection. Cell Rep. 2023 May 10;42(5):112489. doi: 10.1016/j.celrep.2023.112489.
42. Passardi A, Bittoni A, Bai Z, Zhang Z, Sier C, He Y, Shahini E, Solimando AG. Editorial: Angiogenesis blockade for the treatment of gastrointestinal cancer. Front Oncol. 2023;13:1147849. doi: 10.3389/fonc.2023.1147849.
41. Ma W, Wan Y, Zhang J, Yao J, Wang Y, Lu J, Liu H, Huang X, Zhang X, Zhou H, He Y, Wu D, Wang J, Zhao Y. Growth arrest-specific protein 2 (GAS2) interacts with CXCR4 to promote T-cell leukemogenesis partially via c-MYC. Mol Oncol. 2022 Oct;16(20):3720-3734. doi: 10.1002/1878-0261.13306.
40. Korhonen EA, Murtomäki A, Jha SK, Anisimov A, Pink A, Zhang Y, Stritt S, Liaqat I, Stanczuk L, Alderfer L, Sun Z, Kapiainen E, Singh A, Sultan I, Lantta A, Leppänen VM, Eklund L, He Y, Augustin HG, Vaahtomeri K, Saharinen P, Mäkinen T, Alitalo K. Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell-surface expression. J Clin Invest. 2022 Aug 1;132(15):e155478. doi: 10.1172/JCI155478.
39. Yang Y, Xiao Q, Yin J, Li C, Yu D, He Y, Yang Z, Wang G. Med23 supports angiogenesis and maintains vascular integrity through negative regulation of angiopoietin2 expression. Commun Biol. 2022 Apr 19;5(1):374. doi: 10.1038/s42003-022-03332-w.
38. Ma L, Li W, Zhang Y, Qi L, Zhao Q, Li N, Lu Y, Zhang L, Zhou F, Wu Y, He Y, Yu H, He Y*, Wei B*, Wang H*. FLT4/VEGFR3 activates AMPK to coordinate glycometabolic reprogramming with autophagy and inflammasome activation for bacterial elimination. Autophagy. 2022; 18(6): 1385–1400. doi: 10.1080/15548627.2021.1985338
37. Cao X#, Xu B#, Li X#, Li T and He Y*. A Genetically engineered mouse model of venous anomaly and retinal angioma-like vascular malformation. Bio-protocol 2021 11(15): e4117. DOI: 10.21769/BioProtoc.4117.
36. Gan Y, Zhang T, Chen X, Cao W, Lin L, Du L, Wang Y, Zhou F, He X, He Y, Gan J, Sheng H, Sorokin L, Shi Y, Wang Y. Steroids Enable Mesenchymal Stromal Cells to Promote CD8+ T Cell Proliferation Via VEGF-C. Adv Sci (Weinh). 2021 May 2;8(12):2003712. doi: 10.1002/advs.202003712
35. Bae H, Hong KY, Lee CK, Jang C, Lee SJ, Choe K, Offermanns S, He Y*, Lee HJ, Koh GY*. Angiopoietin-2-integrin α5β1 signaling enhances vascular fatty acid transport and prevents ectopic lipid-induced insulin resistance. Nat Commun. 2020 Jun 12;11(1):2980. doi: 10.1038/s41467-020-16795-4.
34. Haijuan Jiang#, Luqing Zhang#, Xuelian Liu#, Wei Sun, Katsuhiro Kato, Chuankai Chen, Xiao Li, Taotao Li, Zhiliang Sun, Wencan Han, Fujing Zhang, Qi Xiao, Zhongzhou Yang, Junhao Hu, Zhihai Qin, Ralf H. Adams, Xiang Gao, Yulong He*. Angiocrine FSTL1 (Follistatin-Like Protein 1) Insufficiency Leads to Atrial and Venous Wall Fibrosis via SMAD3 Activation. ATVB (Arterioscler Thromb Vasc Biol) 2020. doi:10.1161/ATVBAHA.119.313901. bioRxiv 616623; doi: https://doi.org/10.1101/616623.
33. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, Zhou F, Zhang C, Shao L, Feng J, He T, Ning W, Kong Y, Huo Y, He A, Liu B, Zhang J, Adams R, He Y, Tang F, Bian X, Luo J. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res 2020 30: 229-243. doi: 10.1038/s41422-020-0287-8.
32. He Y*. Angiopoietins and TIE Receptors in Lymphangiogenesis and Tumor Metastasis. In: Marmé D. (eds) Tumor Angiogenesis- A Key Target for Cancer Therapy. 2019 Springer, Cham. https://link.springer.com/referencework/10.1007/978-3-319-31215-6.
31. Zheng Y; Liu C; Li Y; Jiang H; Yang P; Tang J; Xu Y; Wang H; He Y*. Loss-of-function mutations with circadian rhythm regulator Per1/Per2 lead to premature ovarian insufficiency. Biol Reprod. 2019 Apr 1;100(4):1066-1072. doi:10.1093/biolre/ioy245.
30. Lee SJ, Lee CK, Kang S, Park I, Kim YH, Kim SK, Hong SP, Bae H, He Y, Kubota Y, Koh GY. Angiopoietin-2 exacerbates cardiac hypoxia and inflammation after myocardial infarction. J Clin Invest. 2018 Nov 1;128(11):5018-5033. doi: 10.1172/JCI99659. Epub 2018 Oct 8.
29. Li P, Wei G, Cao Y, Deng Q, Han X, Huang X, Huo Y, He Y, Chen L, Luo J. Myosin IIa is critical for cAMP-mediated endothelial secretion of von Willebrand factor. Blood 2018 131:686-698. doi: 10.1182/blood-2017-08-802140. Epub 2017 Dec 5
28. Kim J, Park DY, Bae H, Park DY, Kim D, Lee CK, Song S, Chung TY, Lim DH, Kubota Y, Hong YK, He Y, Augustin HG, Oliver G, Koh GY. Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. J Clin Invest. 2017 Oct 2;127(10):3877-3896. doi: 10.1172/JCI94668. Epub 2017 Sep 18.
27. Park DY, Lee J, Kim J, Kim K, Hong S, Han S, Kubota Y, Augustin HG, Ding L, Kim JW, Kim H, He Y, Adams RH, Koh GY. Plastic roles of pericytes in the blood-retinal barrier. Nat Commun. 2017 May 16;8:15296. doi: 10.1038/ncomms15296.
26. 何玉龙*,朱元贵,李伯良,董尔丹*,淋巴管系统相关研究现状与展望,科学通报,2017,62(10):1030-1040.
25. Chu M#, Li T#, Shen B, Cao X, Zhong H, Zhang L, Zhou F, Ma W, Jiang H, Xie P, Liu Z, Dong N, Xu Y, Zhao Y, Xu G, Lu P, Luo J, Wu Q, Alitalo K, Koh GY, Adams RH, He Y*. Angiopoietin receptor Tie2 is required for vein specification and maintenance via regulating COUP-TFII. Elife. 2016 Dec 22;5. pii: e21032. doi: 10.7554/eLife.21032.
24. Chen L, Li J, Wang F, Dai C, Wu F, Liu X, Li T, Glauben R, Zhang Y, Nie G, He Y*, Qin Z*. Tie2 Expression on Macrophages Is Required for Blood Vessel Reconstruction and Tumor Relapse after Chemotherapy. Cancer Res. 76(23):6828-6838 (2016).
23. Park JS, Kim IK, Han S, Park I, Kim C, Bae J, Oh SJ, Lee S, Kim JH, Woo DC, He Y, Augustin HG, Kim I, Lee D, Koh GY. Normalization of Tumor Vessels by Tie2 Activation and Ang2 Inhibition Enhances Drug Delivery and Produces a Favorable Tumor Microenvironment. Cancer Cell 30(6):953-967 (2016).
22. Han S, Lee SJ, Kim KE, Lee HS, Oh N, Park I, Ko E, Oh SJ, Lee YS, Kim D, Lee S, Lee DH, Lee KH, Chae SY, Lee JH, Kim SJ, Kim HC, Kim S, Kim SH, Kim C, Nakaoka Y, He Y, Augustin HG, Hu J, Song PH, Kim YI, Kim P, Kim I, Koh GY. Amelioration of sepsis by TIE2 activation-induced vascular protection. Sci Transl Med. 8(335):335ra55 (2016). doi: 10.1126/scitranslmed.aad9260.
21. Shen B#, Shang Z#, Wang B#, Zhang L#, Zhou F#, Li T, Chu M, Jiang H, Wang Y, Qiao T, Zhang J, Sun W, Kong X, He Y*. Genetic dissection of TIE pathway in lymphatic maturation and valve development. ATVB (Arterioscler Thromb Vasc Biol) 34:1221-1230 (2014).
20. Zhang Y, Lu Y, Ma L, Cao X, Xiao J, Chen J, Jiao S, Gao Y, Liu C, Duan Z, Li D, He Y, Wei B, Wang H Activation of Vascular Endothelial Growth Factor Receptor-3 in Macrophages Restrains TLR4-NF-κB Signaling and Protects against Endotoxin Shock. Immunity. 40:501-514 (2014).
19. Xiong Y, Hu Z, Han X, Jiang B, Zhang R, Zhang X, Lu Y, Geng C, Li W, He Y, Huo Y, Shibuya M, Luo J. Hypertensive stretch regulates endothelial exocytosis of Weibel-Palade bodies through VEGF receptor 2 signaling pathways. Cell Res 23:820-34 (2013).
18. Li T, Yang J, Zhou Q, He Y*. Molecular Regulation of Lymphangiogenesis in Development and Tumor Microenvironment. Cancer Microenviron. 5:249-260 (2012).
17. Lu Y, Xiong Y, Huo Y, Han J, Yang X, Zhang R, Zhu DS, Klein-Heßling S, Li J, Zhang X, Han X, Li Y, Shen B, He Y, Shibuya M, Feng GS, Luo J. Grb-2-associated binder 1 (Gab1) regulates postnatal ischemic and VEGF-induced angiogenesis through the protein kinase A-endothelial NOS pathway. Proc Natl Acad Sci U S A. 108:2957-2962 (2011).
16. Zhang L#, Zhou F#, Han W#, Shen B, Luo J, Shibuya M, He Y*. VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res 20:1319-31 (2010)-Cover paper.
15. Zhou F#, Chang Z#, Zhang L#, Hong Y, Shen B, Wang B, Zhang F, Lu F, Tvorogov D, Alitalo K, Hemmings BA, Yang Z*, He Y*. Akt / Protein Kinase B is required for lymphatic network formation, remodeling and valve development. Am J Pathol 177: 2124-2133 (2010).
14. Holopainen T#, Huang H#, Chen C#, Kim KE, Zhang L, Zhou F, Han W, Li C, Yu J, Wu J, Koh GY, Alitalo K*, He Y*. Angiopoietin-1 overexpression modulates vascular endothelium to facilitate tumor cell dissemination and metastasis establishment. Cancer Res 69:4656-64 (2009).
13. Tammela T#, He Y#, Lyytikkä J, Jeltsch M, Markkanen J, Pajusola K, Ylä-Herttuala S, Alitalo K. Distinct Architecture of Lymphatic Vessels Induced by Chimeric Vascular Endothelial Growth Factor-C/Vascular Endothelial Growth Factor Heparin-Binding Domain Fusion Proteins. Circ Res 100:1468-75 (2007).
12. Wirzenius M, Tammela M, Uutela M, He Y, Odorisio1 T, Zambruno1 G, Nagy JA, Dvorak HF, Ylä-Herttuala S, Shibuya M and Alitalo K. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med 204:1431-40 (2007).
11. He Y, Rajantie I, Pajusola K, Jeltsch M, Holopainen T, Yla-Herttuala S, Harding T, Jooss K, Takahashi T, Alitalo K. VEGFR-3 mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res 65:4739-46(2005).
10. Lin J, Lalani AS, Harding TC, Gonzalez M, Wu WW, Luan B, Tu GH, Koprivnikar K, VanRoey MJ, He Y, Alitalo K, Jooss K. Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res 65:6901-9 (2005).
9. Bhardwaj S, Roy H, Karpanen T, He Y, Jauhiainen S, Hedman M, Alitalo K, Yla-Herttuala S. Periadventitial angiopoietin-1 gene transfer induces angiogenesis in rabbit carotid arteries. Gene Ther 12:388-94 (2005).
8. He Y#, Rajantie I#, Ilmonen M, Makinen T, Karkkainen MJ, Haiko P, Salven P, Alitalo K. Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res 64:3737-40 (2004).
7. He Y, Karpanen T and Alitalo K. Role of lymphangiogenic factors in lymphatic tumor metastasis. Biochim Biophys Acta (BBA Review Cancer) 1654:3-12 (2004).
6. Uutela M, Wirzenius M, Paavonen K, Rajantie I, He Y, Karpanen T, Lohela M, Wiig H, Salven P, Pajusola K, Eriksson U, Alitalo K. PDGF-D induces macrophage recruitment, increased interstitial pressure and blood vessel maturation during angiogenesis. Blood 104:3198-204 (2004).
5. He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T, Alitalo K. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 94:785-7 (2002).
4. Charnock-Jones DS, He Y and Smith SK. Angiogenesis and Vascular Endothelial Growth Factor (VEGF) in Reproduction. In The New Angiotherapy (eds T-P D Fan & E C Kohn), pp.115-128 (2002). Humana Press.
3. Smith SK, He Y, Clark DE, Charnock-Jones DS. Angiogenic growth factor expression in placenta. Semin Perinatol 24, 82-86 (2000).
2. He Y*, Smith SK, Day KA, Clark D, Licence DR, Charnock-Jones DS*. Alternative splicing of vascular endothelial growth factor (VEGF)-R1 (FLT-1) pre-mRNA is important for the regulation of VEGF activity. Mol Endocrinol 13:537-545 (1999).
1. Clark DE, Smith SK, He Y, Day KA, Licence DR, Corps AN, and Charnock-Jones DS. A vascular endothelial growth factor antagonist is produced by the placenta and released into the maternal circulation. Biol Reprod 59:1540-1548 (1998).
招收/聘研究生、研究人员:渴求志同道合者一起探索生命的本质
条件:诚实守信、勤奋好学、真心喜欢18新利备用网站
待遇:衣食无忧