个人资料
- 直属机构:数学科学学院
- 联系电话:
- 性别:女
- 电子邮箱:hui.li@suda.edu.cn
- 专业技术职务:
- 办公地址:苏大本部维格堂415
- 毕业院校:University of Illinois at Urbana-Champaign, USA
- 通讯地址:
- 学位:博士
- 邮编:
- 学历:博士
- 传真:
教育经历
教育经历:
工作经历
工作经历:
- 2011, 11- 至今, 18新利体育 , 教授,博士生导师
- 2010, 9-2011, 8, University of Regina, Canada, Visitor
- 2009, 11-2010, 8, Max-Planck-Institute for Mathematics, Bonn, Germany, Research visiting
- 2008, 11-2009, 10, University of Bourgogne, France, Postdoc Researcher
- 2007, 2-2009, 1, University of Luxembourg, Luxembourg, Researcher
- 2003, 9-2007, 1, Instituto Superior Tecnico, Portugal, Postdoc
个人简历
个人简介:
研究领域
研究领域:
辛几何 (Symplectic Geometry)
李群在辛流形,切触流形,凯莱流形上的作用 (Lie group actions on symplectic, contact, and Kaehler manifolds)
李群在横截辛叶状流形上的作用 (Lie group actions on transversely symplectic foliated manifolds)
开授课程
开授课程:
课程教学:
- 1、微分几何
- 2、微分流形
- 3、拓扑学
- 4、代数拓扑
- 5、辛几何
科研项目
科研项目:
论文
论文:
- 1、H. Li, The fundamental groups of Hamiltonian S^1-manifolds, Proceedings of the American Mathematical Society, 2003, vol. 131, no. 11, 3579-3582.
- 2、H. Li, Semi-free Hamiltonian circle actions on 6-dimensional symplectic manifolds, Transactions of the American Mathematical Society, 2003, vol. 355, no. 11, 4543-4568.
- 3、H. Li, On the construction of certain 6-dimensional symplectic manifolds with Hamiltonian circle actions, Transactions of the American Mathematical Society, 2005, vol. 357, no. 3, 983-998.
- 4、H. Li, The fundamental group of symplectic manifolds with compact Hamiltonian Lie group actions, Journal of Symplectic Geometry, 2007, vol. 4, no. 3, 345-372.
- 5、H. Li, Singular unitarity in "quantization commutes with reduction", Journal of Geometry and Physics, 2008, vol. 58, 720-742.
- 6、H. Li and S. Tolman, Hamiltonian circle actions with minimal fixed sets, International Journal of Mathematics, 2012, vol. 23, 1250071.
- 7、H. Li, The fundamental group of G-manifolds, Communications in Contemporary Mathematics, 2013, vol. 15, no. 3, 1250056.
- 8、H. Li, Corrigendum for Singular unitarity in "quantization commutes with reduction", Journal of Geometry and Physics, 2014, vol. 76, 265-270.
- 9、H. Li, Certain circle actions on Kaehler manifolds, International Mathematics Research Notices, 2014, vol. 2014, no. 18, 5187-5202.
- 10、H. Li, M. Olbermann and D. Stanley, One-connectivity and finiteness of Hamiltonian S^1-manifolds with minimal fixed sets, Journal of London Mathematical Society, 2015, vol. 92, no. 2, 284-310.
- 11、H. Li, Hamiltonian circle actions with fixed point set almost minimal, Math. Z., 2019, vol. 293, no. 3, 1315-1336.
- 12、H. Li, The fundamental groups of contact toric manifolds, Journal of Symplectic Geometry, 2020, vol. 18, no. 3, 815-818.
- 13、H. Li, Hamiltonian circle actions with almost minimal isolated fixed points, Journal of Geometry and Physics, 2021, vol. 163, 104141.
- 14、H. Li, Spherical contact toric manifolds, Proceedings of the American Mathematical Society, 2023, vol. 151, no. 1, 349-353.
- 15、H. Li, Hamiltonian circle actions with minimal isolated fixed points, Math. Z., 2023, vol. 304, no. 2, Article 33.
- 16、H. Li, The fundamental groups of presymplectic Hamiltonian G-manifolds, Israel Journal of Mathematics, 2024, published on line, DOI: 10.1007/s11856-024-2665-2, https://rdcu.be/dYMTZ.
科技成果
软件著作 软件著作: 专利 专利:
荣誉及奖励
荣誉及奖励:
招生信息
招生信息:招生信息1: