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1 N = 1 multiplets and the general Lagrangian

Chiral multiplet The N = 1 chiral field Φ is annihilated by the D̄α̇ differential operator. There-

fore in terms of y = x+ iθσθ̄, we can expand it as

Φ = ϕ(y) +
√
2θψ(y) + θθF (y). (1.1)

F is an auxiliary field and the only on-shell d.o.f.s are one complex scalar ϕ and one left-handed

Weyl fermion ψ. We can certainly consider the conjugate version of Φ, Φ̄, which is annihilated by

the differential Dα.

Vector multiplet The vector field is embedded in a superfield V satisfying V = V †. It certainly

transforms under the gauge symmetry.

Before we fix the gauge, the field content is quite complicated, however, there is a special gauge

which can simplify the expression a lot. This is called the Wess-Zumino gauge, and under this gauge

fixing,

V = −θσµθ̄Aµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x). (1.2)

A useful superfield is constructed from V by performing D for several times.

Wα = −1

4
D̄D̄DαV, (1.3)

W̄α̇ = −1

4
DDD̄α̇V. (1.4)

The only one important fact we need is that

WαWα|θθ = −2iλσµ∂µλ̄− 1

2
F µνFµν −

1

2
F µνF̃µν , (1.5)

where F̃µν = − i
2
ϵµνρσF

ρσ.

The Lagrangian density for a pure super gauge theory can thus be written as

L =
1

4
WαWα

∣∣∣∣
θθ

+
1

4
W̄αW̄α

∣∣∣∣
θ̄θ̄

. (1.6)
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Interaction and Lagrangian We can couple the chiral multiplet to some Abelian/non-Abelian

gauge field V . The invariant action is known as∫
d4θΦ̄JeVa(Ta)IJΦI . (1.7)

This term corresponds to the kinetic term of the chiral fields and we replaced the usual derivative

to a covariant derivative. There is also an interaction term among different chiral multiplets. It is

encoded in the superpotential W (Φ), and we have the following Lagrangian density,∫
d2θW (Φ) + c.c. (1.8)

2 N = 2 multiplets

The N = 2 vector multiplet is constituted from one N = 1 chiral multiplet and one N = 1 vector

multiplet. Note that the chiral multiplet can be generated by Q1α, i.e. start from one highest

weight state |Φ⟩, we obtain the Weyl fermions |λ̃α⟩ = Q1α |Φ⟩. Given that the highest weight

state is annihilated by Q̄’s, further action of Q̄’s will only give derivatives of the highest-weight

scalar field Φ. Q1Q2 |Φ⟩ can be identified with the auxiliary field. Similarly, starting from a Weyl

fermion λα, we act Q1β on it, obtaining σµν
αβFµν . We can schematically write this transformation as

|Fαβ⟩ = Qβ |λα⟩. Thus the N = 2 vector multiplet can be summarized into the following diagram.

λ Fαβ

Φ λ̃

Q2
α

Q1
β

Q1
α

Q2
β

The chiral multiplet must be in the adjoint representation of the gauge group.

In the same spirit, for hypermultiplet, we combine two N = 1 chiral multiplets, (q, ψα) and

(q̃, ψ̃α).

q ψα

ψ̃†
α̇ q̃†

Q†2
α̇

Q1
β

Q†1
α̇

Q2
β

These two N = 1 multiplets are respectively in the representation of the flavor symmetry group R

and its complex conjugate representation R†.
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Example: moment map When we consider the hypermultiplets in the representation of SU(N),

we introduce the following notation,

(QI
a) =

(
qa

q̃†a

)
, (Q̃Ia) =

(
q̃a

−q†a

)
. (2.1)

We can construct an adjoint quantity of the SU(N) group with two SU(2)R indices,

(µIJ) = QI
aQ̃

Jb − δa
b

N
QI

cQ̃
Jc. (2.2)

One component of this matrix, say µ11, corresponds to the primary state in the shorten multiplet

B̂1.

3 N = 2 general action

The N = 2 Lagrangian can be obtained by pasting two N = 1 actions and imposing the SU(2)R

symmetry. The Lagrangian for the vector multiplet is given by

− iτ

8π

∫
d2θtrWαW

α +
Imτ

4π

∫
d4θtrΦ†e[V,·]Φ + c.c. (3.1)

In fact, the convention of normalization used here is not convenient when we try to discuss the

deformation of the theory. We can go to the canonical normalization with the rescaling W → gW ,

where g is the gauge coupling, and we obtain

− iτ

8π

∫
d2θtrWαW

α +
Imτ

4π

∫
d4θtrΦ†e[gV,·]Φ + c.c. (3.2)

Now we see that we can add the exactly deformation FF or FF̃ to deform the Lagrangian without

breaking the supersymmetry or any other symmetries. By redefining the vector field F back to the

canonical normalization, we are able to shift the gauge coupling g in other part of the action and

the θ angle.

The matter part can be added when we prepare two N = 1 chiral multiplets, Q and Q̃. The

Lagrangian reads∫
d4θ(Q†egVQ+ Q̃e−gV Q̃†) +

∫
d2θ(Q̃ΦQ+ c.c.) +

∫
d2θ(µQ̃Q+ c.c.). (3.3)

Again we can see that the exactly marginal deformation we obtained before keeps working even after

we include matters. This fact leads to an important consequence: this exactly marginal deformation

for N = 2 theories is also exactly marginal for N = 4 theories. Let us have a further look at the

N = 4 Lagrangian.
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N = 4 Lagrangian The only N = 4 multiplet is a vector multiplet, which is consisted of an

N = 2 vector multiplet and an N = 2 hypermultiplet (with its conjugate contained too), and its

Lagrangian is straightforward to be written down.

− iτ

8π

∫
d2θtrWαW

α +
Imτ

4π

∫
d4θtrΦ†e[V,·]Φ +

Imτ

4π

∫
d4θ(Z†eg[V,·]Z + Z̃e−g[V,·]Z̃†)

+
Imτ

4π

∫
d2θZ̃[Φ, Z] + c.c. (3.4)

Since the exactly marginal deformation FF and FF̃ preserve the SU(4)R symmetry, we know that

they are also the exactly marginal deformation of the N = 4 SYM. There is also a mass deformation

of the theory by adding a mass term ∫
d2θ(µZ̃Z + c.c.), (3.5)

and the resulting theory is called an N = 2∗ theory.

4 N = 2 effective action

The above Lagrangian is obtain by requiring the theory to be renormalizable. However, for a

Wilson-type effective action, we do not need this condition and the most general action written in

terms of N = 2 superfields, ΦN=2(x, θ1, θ̄
1, θ2, θ̄

2) = ϕ(x) + θiψ
i + θ̄iχ̄

i + · · ·+ θ21 (̄θ
1)2θ22 (̄θ

2)2D′, as

S =

∫
d4xd2θ1d

2θ2trF(ΦN=2) + c.c. (4.1)

The N = 2 vector multiplet can be expressed with the N = 2 chiral superfield as

ΦN=2(y, θ) = Φ(y, θ1) +
√
2θ2αWα(y, θ1) + (θ1)2G(y, θ1), (4.2)

when we are considering an abelian effective gauge theory, the effective action can be integrated

with respect to θ2 and we obtain

S =

∫
d4xd2θ1

(
−1

2

∂F
∂Φa

Ga − ∂2F
∂ΦaΦb

W aαW b
α + c.c.

)
. (4.3)

F is called the prepotential and it is known that to realize the gauge theory, we have to set

G = −1
2

∫
d2θ̄1Φ̄

†e2gV .

Matter can also couple to the theory with the usual matter Langrangian added.

5 Seiberg-Witten theory for SU(2) pure gauge theory and

with matter

The Seiberg-Witten theory is an algorithm to compute the prepotential of the effective theory in

the Coulomb branch of N = 2 super Yang-Mills theory.
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First, let us give a brief instruction on what a Coulomb branch and what a Higgs branch is.

In the original normalizable theory, we have the vacuum potential (variation with respect to the

auxiliary field D)

1

g2
[
Φ†,Φ

]
+
(
QiQ

†i − Q̃†
iQ̃

i
)
|traceless = 0. (5.1)

The Coulomb branch is where only the VEV of the scalar in Φ is nonzero, and the Higgs branch

is where only the scalars in hypermultiplets are nonzero. We can also have all of them to be

non-vanishing, and that is generally called a mixed branch.

At a generic point of the Coulomb branch, the gauge group breaks down to U(1)’s. We introduce

a Riemann surface with branch cuts, whose coordinates are given by the vev of ui = rmtr(Φi) for

i = 2, . . . , n, where n is the rank of the gauge group. The prepotential, which can be expressed as

a function of ui’s, is considered to be defined on this Riemann surface C. In the high energy limit,

we can compute the non-abelian gauge theory perturbatively. That is to say, we can easily obtain

the boundary condition for F with large |u| (high energy limit). In the effective theory, we have

the BPS bound

Z = niai +mia
i
D + µjfj, (5.2)

where ai is the diagonal entries of the vev of the scalar field Φ in the vector multiplet, aiD := ∂F
∂ai

,

and µj is the mass of hypermultiplets with flavor charge fj. We also know from the effective action

that the effective gauge coupling is given by

τij =
∂2F
∂ai∂aj

=
∂ajD
∂ai

. (5.3)

The Seiberg-Witten theory gives us the prescription to compute a and aD and by integrating

aD over a, we can easily obtain the expression of F .

The first known example is the pure SU(2) gauge theory, whose Riemann surface C is specified

by a torus form

Λ2z +
Λ2

z
= x2 − u. (5.4)

Since it is an SU(2) theory, u = 1
2
⟨trΦ2⟩ ∼ a2. We have four branch points of the Riemann surface,

respectively 0, ∞ and z± = − u
2Λ2 ±

√
u2

4Λ4 − 1. The Riemann surface is two Ĉ connected by the

two branch cuts running from 0 to z− and from ∞ to z+. It is topologically equivalent to a torus,

and we define two fundamental circles, one penetrating the branch cuts denoted as B-cycle, and

another denoted as A-cycle. The Seiberg-Witten prescription states that we can compute a and aD

with the Seiberg-Witten differential λ = x
z
dz,

a =
1

2πi

∮
A

λ, aD =
1

2πi

∮
B

λ. (5.5)
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We can check whether the monodromy of the perturbative theory agrees with that in the Seiberg-

Witten theory. When we break the gauge group from SU(2) to U(1)’s, we have

F SU(2)
µν = diag

(
FU(1)
µν ,−FU(1)

µν

)
, (5.6)

and the U(1) gauge coupling is related to the SU(2)’s by τU(1) = 2τSU(2). Thus from the SU(2)

perturbative calculation, we have

τU(1)(a) = − 8

2πi
log

a

Λ
+ . . . , (5.7)

where . . . expresses only the non-perturbative effects, since N = 2 theories are one-loop exact.

Apparently, even in the perturbative region, this function is not simple-valued, and we have a

monodromy around the infinity

M∞ =

(
−1 4

0 −1

)
, (5.8)

note that aD = − 8a
2πi

log a
Λ
+ . . . and by going around the infiniy as u ∼ a2 gains a phase 2π,

a → aeπi. In the Seiberg-Witten theory, around u ∼ ∞ (i.e. u ≫ Λ2), we have x ∼
√
u, 1 and

z± ∼ −(u/Λ2)±. Since z+ is very small, we can deform the contour to locate at |z| = 1 and we can

easily see that a =
√
u. We have to be careful when we try to compute aD with x ∼

√
u, because it

only holds up to z ∼ u and down to z ∼ 1/u. We can only compute using the approximated value

of x along the line from z+ to z+, and we obtain

aD ≃ 2

√
u

2πi

∫ z−

z+

dz

z
=

2
√
u

πi
log

u

Λ2
. (5.9)

For a, we can deform the integral contour (refer to Figure 1) to, say, the unit circle |z| = 1 to obtain

a ≃
√
u

2πi

∮
1

z
dz =

√
u. (5.10)

These expressions for a and aD agree with the perturbative calculation results. The prepotential F
can be found by integrating aD over a to obtain

F ≃ a2

πi
− 2a2

πi
log

a

Λ
, (5.11)

in the perturbative region.

We note that there are two special points on the u-plane, with u = ±2Λ2, where we have aD

vanish at these points. That means instead of massless quarks in the perturbative regime, we now

have massless monopoles (aD = 0) at such strong coupling points.

1Note that the branch cut is for function of z, so we have to restrict us to one branch of u. Fortunately, the

overall sign does not matter in the BPS bound.
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0z−z+

∞

AB

A′

Figure 1: Two branch cuts and A, B-cycles together with the deformed A-cycle, A′-cycle.

Now let us turn to the matter case, Nf = 1. The curve is known as

2Λ(x− µ)

z
+ Λ2z = x2 − u, (5.12)

where µ is the mass of additional matter. Now we have three branch points on the z-plane, and

in the limit u → ∞, we have two almost degenerate points at z1,2+ = ±i Λ√
u
, and one around the

infinity, z = − u
Λ2 . Again, in such a perturbative region, we have a ∼

√
u and

aD ∼ −2

√
u

2πi

∫ u/Λ2

Λ/
√
u

dz

z
= −3a

πi
log a. (5.13)

We note that in the last equation, we dropped out some subleading contribution with order a. In

general, we have the one-loop coupling running in the perturbative region

τ(a) = −2(4−Nf )

2πi
log

a

Λ
, (5.14)

and we see that the curve we are considering reproduces this result for Nf = 1.

When we go to the case of Nf = 2, we can further put one more factor of the form (x − µ) on

the numerator of 1/z.

(x− µ1)(x− µ2)

z
+ 4Λ2z = x2 − u. (5.15)

It can be checked that this is indeed the Seiberg-Witten curve for Nf = 2, and in fact we can change

the variable z → z′ = (x−µ2)z
(2Λ)

to make the two factors of (x− µ) in a more symmetric form,

2Λ(x− µ1)

z
+ 2Λ(x− µ2) = x2 − u. (5.16)

Certainly, the Seiberg-Witten differential does not change its form.
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In the same way, for Nf = 3, we can write down the curve as

(x− µ1)(x− µ2)

z
+ 2Λ(x− µ3)z = x2 − u, (5.17)

and in the case of Nf = 4,

c1
(x− µ1)(x− µ2)

z
+ c2(x− µ3)(x− µ4)z = x2 − u, (5.18)

with two complex constants c1,2. Interesting things happen in this case, as we can see when we set

u to be very large, we can evaluate x to

x ∼
√

u
c1
z
+ c2z − 1

, (5.19)

and the location of branches points no longer depends on u, which leads to the conclusion that

aD ∝ a, (5.20)

and we see that the gauge coupling τ is not running.

6 Seiberg-Witten curve from brane construction

In arXiv:hep-th/9703166, Witten contructed a large class of 4d N = 2 gauge theories in the D4-NS5

system of type IIA superstring and analyzed them in the M-theory.

The illustration is very simple. We have NS5-branes stretching along x0,1,2,3,4,5 and D4’s stretch-

ing along x0,1,2,3,6. We set all NS5’s locating at x7,8,9 = 0, but separated in the 6-th direction.

We know that under the dragging effect of D4-branes, x6 of NS5-branes takes the form

x6 = k log |v|+ const., (6.1)

where v = x4 + ix5 and the D4 under consideration is now put at the origin of v-plane and k is

some constant related to the tension of branes. With only one D4 ending on the NS5 brane, we see

that x6 diverges at the the infinity of v-plane, to cancel this divergence, we need equal numbers of

D4’s on two sides, i.e.

x6 = k
N∑
i=1

log |v − ai| − k

N∑
i=1

log |v − bi|+ const. (6.2)

From the convergence of action of the NS5-brane, we also have the constraint∑
i

ai −
∑
i

bi = 0. (6.3)
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This configuration generally gives the A-type quiver gauge theories, where strings extended

cross the NS5 and ended on two neighboring D4’s give the hypermultiplet taking bifundamental

representation of the respective gauge group rising from two D4’s. The gauge coupling of the vector

multiplet on each D4 reads

1

g2α(v)
=
x6α(v)− x6α−1(v)

λ
, (6.4)

where α denotes that the gauge coupling belongs to the brane between the (α− 1)-th and the α-th

NS5-brane. We clearly see a logarithmic divergence at small v and this can be interpreted as the

UV behavior of the one-loop correction of gauge couplings.

Witten further lifted this configuration up to the M-theory by adding one x10-circle, and we

identify the complexified gauge coupling as

−iτα(v) = sα(v)− sα−1(v), (6.5)

with s = 1
R
(x6 + ix10). Without considering the balance of force, we will have a running of the

gauge coupling of the form

−(2Nc −Nf ) ln v, (6.6)

which is a well-known form of the beta function of 4d SYMs. We see that the brane construction

always gives gauge theories without gauge coupling running at the IR region of the string theory,

i.e. SCFTs.

Lifting up to M-theory, all these branes become M5-branes. D4 is obtained by wrapping on the

M-theory circle S1 in the x10 direction. Therefore, the 4d theory we are considering is deduced from

the M5-brane on the manifold R1,3×Σ6,10. The self-dual tensor in the tensor multiplet of M5-brane

can be reduced as

T = F ∧ Λ + ∗F ∧ ∗Λ, (6.7)

where Λ is harmonic one-form (dΛ = d ∗ Λ = 0) on Σ. For a genus g surface Σ, we will obtain g

different types of gauge fields and the low energy effective theory is believed to have gauge group

U(1)g.

Let us consider how to obtain the Seiberg-Witten curve from this brane construction. In the

language of M-theory, we use the coordinate t = exp(−s) and we would like to describe the brane

”curve” on the t-v plane as

F (t, v) = 0. (6.8)

The simplest set up is with two NS5-branes and k D4-branes stretched between them. In the

classical picture, we expect that there are k roots of v by solving the above algebraic equation and

two roots of t. That is to say the curve takes the form

A(v)t2 +B(v)t+ C(v) = 0. (6.9)
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The zeroes of C(v) can be identified as the positions of external D4-branes, as at these places we

always have one solution t = 0, x6 → ∞, which agrees with the near center behavior (6.2). Similarly,

the zeroes of A(v) correspond to where t→ ∞, i.e. x6 → −∞, the places of external D4’s attached

from the left-hand side.

Therefore, we reached the conclusion that for a pure SU(k) gauge theory, the curve has no zeroes

in A(v) and C(v) and thus reads

t2 +B(v)t+ 1 = 0, (6.10)

or

t2 =
B(v)2

4
− 1, (6.11)

after shift and rescaling of t and v. The form of B(v) is

B(v) = vk +
k∑

i=2

uiv
k−i. (6.12)

When t is very large, we recover the asymptotic behavior of the bending effect t ∝ vk, (6.2) and

also for small t, t ∝ v−k.

Note that in the standard form of the SW curve, t corresponds to z and v is x. To add

hypermultiplets into the theory, we can either add D4-branes from the left-hand side or from the

right-hand side. This exactly claims that in the SW curve, we can either put the factor (z − m)

in front of z or above 1/z. We note that transferring all matters from left to right can be done by

a parity transformation, reversing the x6 direction, which corresponds to t → t−1 and is a familiar

transformation to us. However, pulling only part of the external branes to the other end cannot be

realized by coordinate transformation and thus can not be realized in the SL(2,Z) transformation.

This is a highly non-trivial symmetry of the system, while trivialized under the brane picture.

More generally for quiver gauge theories with n NS5-branes, the curve can be written down as

A0(v)t
n + A1(v)t

n−1 + · · ·+ An(v) = 0. (6.13)

Again, external D4’s correspond to zeroes in An(v) and A0(v) respectively. For SU(2) quiver gauge,

Ai(v) = v2 − vi, and we recover the general form of the SW curve claimed before,∏
i

(t− ti)v
2 = tUn−1(t), (6.14)

where Un−1 is a polynomial of degree n− 1.
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7 Curve for N = 4 SYM

The curve for N = 4 is vague, since we cannot directly read it off from the usual brane construction

lifted to M-theory, which definitely breaks the supersymmetry down to N = 2. One way to obtain

such a theory in the string theory is to consider N D3-branes in type IIB. The 4d theory living

on D3-branes is a U(N) SYM theory. The gauge coupling is determined by the tension of the D3-

rabnes. We can compactify two directions of the transverse space on a torus, and take T-duality

along on of the circles. The resulting theory is with N D4-branes on R1,3 × S1, i.e. the low energy

theory is an N = 2 5d SYM compactified on S1. This setup resembles the brane construction for

general 4d N = 2 quiver gauge theories, which will be described in details in later sections, and

now we have no NS5-branes, that is to say, there is no t in the curve (in Witten’s terminology).

Therefore, we expect the curve to take the form,

N∏
i=1

(v − vi) = 0. (7.1)

8 Derivation of Prepotential from Partition Function

The Seiberg-Witten curve is extracted out from the Nekrasov partition function by taking the limit

ϵ1,2 → 0.

An important identity to be used in the derivation is given by

∆(0)∆(ϵ1 + ϵ2)

∆(ϵ1)∆(ϵ2)
= exp

(
ϵ1ϵ2

d2

dt2
log∆(t)

∣∣∣∣
t=0

+O(ϵ2)

)
. (8.1)

The k-instanton partition function of 5d U(N) gauge theory is given by

Zk =
1

k!

(
[ϵ1 + ϵ2]

[ϵ1][ϵ2]

)k ∮ ( k∏
i=1

dϕi

2πi

)
k∏

i=1

N∏
a=1

1

[aa − ϕi][ϕi − aa + ϵ1 + ϵ2]

k∏
i,j=1
i ̸=j

S−1(ϕi − ϕj),

(8.2)

where

S(x) :=
[x+ ϵ1][x+ ϵ2]

[x][x+ ϵ1 + ϵ2]
. (8.3)

One can replace [x] by x in the above expression to take the 4d limit. Note that

d2

dt2
log[x− t] =

d2

dt2
log

(
2 sinh

(
x− t

2

))
= − 1

[x− t]2
, (8.4)

and by introducing the density

ρ(x) = ϵ1ϵ2

k∑
i=1

δ(x− ϕi), (8.5)
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we have

Zk ∼ exp

(
− E
ϵ1ϵ2

)
, (8.6)

with the free energy given by

E =

∫
dxdy

ρ(x)ρ(y)

[x− y]2
+

N∑
a=1

∫
dxρ(x) (log[aa − x][x− aa]) . (8.7)

In the partition function, we need to consider the weighted sum of all integer k, 2

ZU(N) =
∞∑
k=0

Λ2NkZk, (8.8)

and the instanton counting parameter Λ can be absorbed into the free energy E , to define

EΛ =

∫
dxdy

ρ(x)ρ(y)

[x− y]2
+

N∑
a=1

∫
dxρ(x)

(
log

(
[aa − x][x− aa]

Λ2

))
(8.9)

Let us introduce the following kernel function,

kΛ(x) :=
x2

2

(
log

|x|
Λ

− 3

2

)
, (8.10)

satisfying

k′′Λ(x) = log

(
|x|
Λ

)
, k

(4)
Λ (x) = − 1

x2
. (8.11)

Then we can rewrite EΛ in the 4d limit to

E4d
Λ = −

∫
dxdyρ′′(x)ρ′′(y)kΛ(x− y) +

N∑
a=1

∫
dx (ρ′′(x)kΛ(x− aa) + ρ′′(x)kΛ(aa − x)) . (8.12)

It is natural to define a 5d version of the kernel function, k5dΛ , to lift the above expression to to 5d.

We further note that

d2

dx2
|x− a| = 2δ(x− a), (8.13)

we can define

f(x) = ρ(x)− 1

2

∑
a

|x− aa|, (8.14)

2Of course, we “forgot” to consider the contribution from
(

[ϵ1+ϵ2]
[ϵ1][ϵ2]

)k
, as it can be absorbed into the gauge coupling

q = Λ2N .
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to rewrite

E4d
Λ = −

∫
dxdyf ′′(x)f ′′(y)kΛ(x− y) +

N∑
a,b=1

kΛ(aa − ab). (8.15)

The above free energy only covers the non-perturbative part, but we also need to compensate

with the perturbative part. The perturbative part (involving the classical piece and the one-loop

factor) is described by the function,

γϵ1,ϵ2(x|R,Λ) =
1

2ϵ1ϵ2

(
−R

6

(
x+

ϵ1 + ϵ2
2

)3

+ x2 log(RΛ)

)
+

∞∑
k=1

1

k

e−Rnx

(eRnϵ1 − 1)(eRnϵ2 − 1)
, (8.16)

where R is the radius of S1 on which the 5d theory is compactified, and it is usually absorbed into

ϵ1,2, Λ and aa’s (when R does not appear explicitly, it is absorbed). The perturbative partition

function is given by

Zpert
U(N)({aa};R) = Λ

1−N2

12 exp

( ∑
α: root

γϵ1,ϵ2(aα|R,Λ)

)
. (8.17)

For our purpose, we take the unrefined limit ϵ1 = −ϵ2 = ℏ, and expand γℏ,−ℏ as

γℏ,−ℏ(x|R,Λ) =
∞∑
g=0

γg(x|R,Λ)ℏ2g−2, (8.18)

and we have

γ0 =
x3

12
− x2

2
log(RΛ)− 1

R2
Li3(e

−Rx). (8.19)

Summing over all γϵ1,ϵ2(aα|R,Λ) and taking the 4d limit (R → 0 ?), it in fact reduces to

γ4d0 =
x2

2
log
(x
Λ

)
− 3x2

4
, (8.20)

and γ4dϵ1,ϵ2 can be determined from

γ4dϵ1,ϵ2(x; Λ) =
d

ds

(
Λs

Γ(s)

∫ ∞

0

dt ts−1 e−tx

(eϵ1t − 1)(eϵ1t − 1)

)∣∣∣∣
s=0

. (8.21)

For example, at the leading order of ϵ1 = −ϵ2 = ℏ,

γ4d0 = − d

ds

(
Λs

Γ(s)

∫ ∞

0

dt ts−3e−tx

)∣∣∣∣
s=0

= − d

ds

(
Λs

Γ(s)
x2−sΓ(s− 2)

)∣∣∣∣
s=0

=
x2

2
log
(x
Λ

)
− 3

4
x2, (8.22)

where we used that

lim
s→0

Γ(s− 2)

Γ(s)
=

1

2
, lim

s→0

d

ds

(
Γ(s− 2)

Γ(s)

)
=

3

2
. (8.23)

We note that γ4d0 coincides with the kernel function kΛ(x), but contributes to the free energy with

an opposite sign, so at the end the full prepotential is described by

F = Fpert + F inst = − 1

ℏ2

∫
dxdyf ′′(x)f ′′(y)kΛ(x− y). (8.24)

13



9 Derivation of Seiberg-Witten Curve from Prepotential

We want to maximize the above prepotential to find the saddle point of the partition function, so

that the thermodynamic limit of the partition function is completely characterized by this critical

prepotential.

As the Coulomb branch parameters are fixed in the maximization process, we can introduce

Lagrange multipliers, ξ1, ξ2, . . . , ξN to instead minimize

SΛ(f) = −F − 4
N∑
a=1

ξaaa. (9.1)

There in fact exists a concave and piecewise-linear function, ∃σ(x), defined on x ∈ [−N,N ], satis-

fying ∑
a

ξaaa = −1

2

∫
R
dxσ (f ′(x)) , (9.2)

and

σ′(x) = ξi, for x ∈ [−N + 2(i− 1),−N + 2i], (9.3)

σ(−N) = −σ(N) = −
∑
a

ξa. (9.4)

Using this so-called surface tension function σ(x), we can write down the variation equation of

SΛ(f) over f
′(x), ∫

y ̸=x

dy(y − x)

(
log

∣∣∣∣y − x

Λ

∣∣∣∣− 1

)
f ′′(y) = σ′ (f ′(x)) . (9.5)

By defining

[Xf ](x) :=

∫
y ̸=x

dy(y − x)

(
log

∣∣∣∣y − x

Λ

∣∣∣∣− 1

)
f ′′(y), (9.6)

we see that at the saddle point f = f⋆,

[Xf⋆](x) = ξi, for −N + 2i− 2 < f ′
⋆(x) < −N + 2i, (9.7)

ξi < [Xf⋆](x) < ξi+1, for f ′
⋆(x) = −N + 2i, (9.8)

where i runs from 0 to N and we set ξ0 = ξN = ∞. We can then define

φ(x) := f ′
⋆(x) +

1

πi
[Xf⋆]

′(x), (9.9)
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which is realized as a map from R to the boundary of the following region ∆,

∆

(9.10)

as we can see that when f ′(x) does not belong to {−N + 2i}Ni=0, φ(x) is real.

The next step is to construct a map to the above region ∆ from the upper-half plane with cuts

on the complex plane. Let us denote the conformal map as Φ(z), and it is constructed by the

mathematicians to be

Φ(z) =
2

πi
log (w(z)) +N, (9.11)

where w(z) satisfies

ΛN

(
w +

1

w

)
= PN(z), (9.12)

for a polynomial PN(z) of the form

PN(z)
2 − 4Λ2N =

N∏
i=1

(z − α+
i )(z − α−

i ). (9.13)

We note that the map

g(w) : w 7→ ΛN

(
w +

1

w

)
, (9.14)

known as the Zhukowski function maps the open disk |w| < 1 to the exterior of the interval

[−2ΛN , 2ΛN ], i.e. C\[−2ΛN , 2ΛN ].The Zhukowski function maps the real axis to the real axis, so

the cut [−2ΛN , 2ΛN ] corresponds to |w| ≥ 1 on the real axis. It is thus easy to see that on the

z-plane, α±
i are mapped to the endpoints of the corresponding N cuts. We pair α−

i and α+
i together

so that PN(z)
2 − 4Λ2N < 0 for α−

i < z < α+
i (see Figure 2). When PN(z)

2 − 4Λ2N < 0, it implies

that |g(w)| = |PN(z)| < 2ΛN , and it coincides with one cut.

15



α−
1 α+

1 α−
2 α+

2

P ′
4(z) < 0

P ′
4(z) > 0

Figure 2: A typical Zhukowski function g(w) = P2(z) with P
′
4(z) := P2(z)

2 − 4Λ4 = (z − α−
1 )(z −

α+
1 )(z − α−

2 )(z − α+
2 ) on the real axis. The cut is marked black on the real axis.
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Let us take for example z = α−
i + θ, then at the first order of θ, we have

PN(z)
2 − 4Λ2N ≃ θ(α−

i − α+
i )
∏
j ̸=i

(α−
i − α−

j )(α
−
i − α+

j ), (9.15)

PN(z) ≃ 2ΛN +
θ

2ΛN
(α−

i − α+
i )
∏
j ̸=i

(α−
i − α−

j )(α
−
i − α+

j ), (9.16)

and w can be solved to

w ≃ e2πiℓ − θ
1
2

√
2ΛN

(
(α−

i − α+
i )
∏
j ̸=i

(α−
i − α−

j )(α
−
i − α+

j )

) 1
2

, (9.17)

for some integer ℓ. Note taht when θ > 0, terms in (•)
1
2 is negative, it is then easy to check that

the cuts are mapped to the real axis in ∆.

Let us analyze the property of periods on the curve (9.12). The Coulomb branch parameters ai

are fixed to coincide with the A-cycle

ai =

∮
Ai

dS, (9.18)

where

dS =
1

2πi

zdw

w
. (9.19)

Around the cuts in ∆, we actually have

φ(x) = Φ(x+ i0), (9.20)

and also for real-valued ξi’s, the maximizer satisfies

f ′
⋆(x) = Reφ(x), (9.21)

Further note that Φ′ is real along the cuts (real axis), we have

Φ′(z) =
1

πi

∫
R

Reφ′(x)

(x− z)
, (9.22)

and we can define a resolvent for any given function f(x) as

Rf(z) :=
1

2

∫
R

f ′′(x)

z − x
, (9.23)

to write down

Φ′(z) = − 2

πi
Rf⋆(z) =

2

πi

w′(z)

w(z)
=

2

πi

d

dz
logw(z). (9.24)
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The A-period can then be rewritten in the language of partition function as

ai =
1

2πi

∮
Ai

zRf⋆(z)dz. (9.25)

As for the B-period, since we have

Imφ(x) = − 1

π
[Xf⋆]

′(x), (9.26)

and [Xf⋆](x) = ξi at z = α−
i − 0, we can write

ξi+1 − ξi = −π
∫ α−

i+1

α+
i

Imφ(x)dx. (9.27)

On the interval (α+
i , α

−
i+1), the function φ(x) is pure imaginary, so integrating the above integral

by parts, we obtain

ξi+1 − ξi = −πi
∫ α−

i+1

α+
i

xdφ = −4πi

∫ α−
i+1

α+
i

dS = 2πi

∮
Bi

dS. (9.28)

We remark that ξi+1 − ξi is the dual parameter to ai+1 − ai in the prepotential. This shows how

the Seiberg-Witten theory is derived from the prepotential, and thus the partition function.

Adding matters Adding hypermultiplets in fundamental representation introduces a factor,

Nf∏
f=1

[ϕi −mf ], (9.29)

into the instanton integrand Zk, and the perturbative part is given by

Zpert
fund.({mf};R) = exp

−
N∑
a=1

Nf∑
f=1

γϵ1,ϵ2(aa −mf )

 . (9.30)

The free energy computed from the instanton partition function reads

EΛ =

∫
dxdy

ρ(x)ρ(y)

[x− y]2
+

N∑
a=1

∫
dxρ(x)

(
log

(
[aa − x][x− aa]

Λ2

))
−

Nf∑
f=1

∫
dxρ(x) log

[x−mf ]

Λ
,

(9.31)

18



where the instanton counting parameter is reparameterized to Λ2Nk−Nfk.

E4d
Λ = −

∫
dxdyρ′′(x)ρ′′(y)kΛ(x− y) +

N∑
a=1

∫
dx (ρ′′(x)kΛ(x− aa) + ρ′′(x)kΛ(aa − x))

−
Nf∑
f=1

∫
dxρ′′(x)kΛ(x−mf )

= −
∫

dxdyf ′′(x)f ′′(y)kΛ(x− y)−
∫

dxf ′′(x)kΛ(x−mf ) +
N∑

a,b=1

kΛ(aa − ab)

−
N∑
a=1

Nf∑
f=1

kΛ(aa −mf ) (9.32)

The prepotential at the end is obtained as

F = −
∫

dxdyf ′′(x)f ′′(y)kΛ(x− y)−
Nf∑
f=1

∫
dxf ′′(x)kΛ(x−mf ). (9.33)

Taking variation about f(x), we see that the maximizer f(x) = fm⋆(x) can be obtained from

that of the pure gauge theory, f⋆(x) with a shift,

f ′′
m⋆(x) +

Nf∑
f=1

δ(x−mf ) = f ′′
⋆ (x). (9.34)

We can define a new variable w̃ associated to fm⋆. It can be worked out, for example, from

− 1

πi

∫
R

f ′′
⋆

z − x
dx =

2

πi

d

dz
logw(z), (9.35)

to obtain

2

πi

d

dz
log w̃(z) = − 1

πi

∫
R

f ′′
m⋆

z − x
dx = − 1

πi

∫
R

f ′′
⋆

z − x
dx+

∑
f

1

πi

1

z −mf

=
2

πi

d

dz
logw(z) +

∑
f

1

πi

d

dz
log(z −mf ), (9.36)

i.e.

w̃(z) = w(z)
∏
f

(z −mf )
1
2 . (9.37)

The Seiberg-Witten curve is then given by

ΛN−
Nf
2

(
w̃ +

∏Nf

f=1(z −mf )

w̃

)
= P̃N(z). (9.38)

19



10 A Short Cut to Seiberg-Witten Curve

The above approach from the prepotential to the Seiberg-Witten curve is very systematic, rigorous

but mathematical and seems to be artificial. In fact there is a easier and more clear way to carry

out essentially the same analysis.

We introduce the resolvent

R(z) =

∫ ∞

−∞

f ′′(x)

z − x
dx, (10.1)

for the profile function f(z), which is essentially the same as (9.23).

A well-known fact for the resolvent is that if f ′′(x) has a finite support [a−, a+], then R(z) will

have a branch cut between [a−, a+]. As we know that

f ′′(x) = ρ′′(x)−
∑
a

δ(x− aa), (10.2)

and

ρ(x) = ϵ1ϵ2

k∑
i=1

δ(x− ϕi), (10.3)

before we take the thermodynamic limit, sitting on each pole of the contour integral,

ϕ(a,x) = aa + ϵ1(i− 1) + ϵ2(j − 1), (10.4)

where x = (i, j) ∈ λa with
∑

a |λa| = k. Therefore in the computation of U(N) theory, the resolvent

at the saddle point,

R⋆(z) =

∫ ∞

−∞

f ′′
⋆ (x)

z − x
dx, (10.5)

is expected to have N branch cuts, which are denoted as Ci =
[
ai−, a

i
+

]
.

Also due to the fact that f ′′(z) only has supports on Ci’s, we obtain the following properties of

f ′′(x) by using the explicit form of ρ(x),∫
Ci
f ′′(x)dx = −1, (10.6)∫

Ci
xf ′′(x)dx = −ai, (10.7)∫

Ci
x2f ′′(x)dx = −a2i + 2ϵ1ϵ2|λi|, (10.8)∫

Ci
x3f ′′(x)dx = −a3i + 6ϵ1ϵ2

ki∑
j=1

ϕj

= −a3i + 6ϵ1ϵ2ai|λi|+ 3ϵ1ϵ2
∑
n

ϵ1

(
(λ

(n)
i )2 − λ

(n)
i

)
+ 3ϵ1ϵ2

∑
m

ϵ2

(
(λ

t(m)
i )2 − λ

t(m)
i

)
= −a3i + 6ϵ1ϵ2ai|λi| − 3ϵ1ϵ2(ϵ1 + ϵ2)|λi|+ 3ϵ1ϵ2

(
ϵ1||λi||2 + ϵ2||λti||2

)
. (10.9)
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The branch cut of the resolvent can be seen in the following way: we split the resolvent into two

parts, and call them the regular and singular parts of the resolvent. On z ∈ Ci, we have

Rreg(z) := lim
ϵ→0+

1

2
(R(z + iϵ) +R(z − iϵ)) , (10.10)

Rsing(z) := lim
ϵ→0+

1

2i
(R(z + iϵ)−R(z − iϵ)) . (10.11)

If we simply take R(z) = x
1
2 or R(z) = log(z), then we can see that Rreg(z) and Rsing(z) are nothing

but the real and imaginary part of R(z). It is then natural to analytically continue these functions

to the whole complex plane z ∈ C.

We further define

R±(z) := Rreg(z)± iRsing(z). (10.12)

By construction, Rreg(z, ϵ) is a smooth function even along the branch cuts Ci’s, while Rsing changes

its sign by crossing the branch cuts, i.e.

lim
δ→0+

Rreg(z + iδ) = lim
δ→0+

Rreg(z − iδ), (10.13)

lim
δ→0+

Rsing(z + iδ) = − lim
δ→0+

Rsing(z − iδ). (10.14)

For square-root branch cuts, R±(z) respectively give the single-valued function R(z) defined on the

two-sheet Riemann surface connected with branch cuts Ci’s.

We need to analyze the asymptotic behavior of the resolvent, which is determined by the saddle

point equation obtained by minimizing the prepotential with two Langrange multipliers,

− 1

ℏ2

∫
dxdyf ′′(y)kΛ(x− y) +

∑
a

ξa

(∫
Ca
dx xf ′′(x) + aa

)
+
∑
a

ηa

(∫
Ca
dxf ′′(x) + 1

)
. (10.15)

The saddle point equation then reads

− 2

ℏ2

∫
dyf ′′(y)kΛ(x− y) + xξi + ηi = 0, (10.16)

for x ∈ Ci. Taking derivative over x gives,∫
dyf ′′(y)

(
(x− y) log

(
x− y

Λ

)
− (x− y)

)
=

ℏ2

2
ξ, (10.17)∫

dyf ′′(y) log

(
x− y

Λ

)
= 0, (10.18)∫

dyf ′′(y)
1

x− y
= 0. (10.19)

We have to be careful that all the integrals above are principle-value integral. From the last equation,

we conclude that for z ∈ R \ ∪iCi,

Rreg ⋆(z) = lim
ϵ→0+

1

2
(R⋆(z + iϵ) +R⋆(z − iϵ)) = P.V.

∫
dyf ′′

⋆ (y)
1

x− y
= 0

⇒ R+
⋆ (z) = −R−

⋆ (z). (10.20)
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We also see that the asymptotic behavior of the resolvent function reads

lim
z→±∞

R⋆(z) = 0. (10.21)

Let us define the A-cycles as contours surrounding the supports Ci’s, and denote the one around

Ci as Ai. We then have∮
Aa

dzR⋆(z) =

∫ ∞

−∞
dx

∮
Aa

dz
f ′′
⋆ (x)

z − x
= 2πi

∫
Ca
f ′′
⋆ (x)dx = −2πi, (10.22)∮

Aa

dz zR⋆(z) = 2πi

∫
Ca
xf ′′

⋆ (x)dx = −2πiaa. (10.23)

The B-cycles Bi are defined as the circles that surround the endpoints of two neighboring branch

cuts, αi
+ and αi+1

− . We can evaluate the integral of resolvent in B-cycles as follows,∮
Bi

dzR⋆(z) =

∫ α−
i+1

α+
i

R+
⋆ (z)dz +

∫ α+
i

α−
i+1

R−
⋆ (z)dz

= 2

∫ α−
i+1

α+
i

R+
⋆ (z)dz = 0, (10.24)

∮
Bi

dz zR⋆(z) = 2

∫ α−
i+1

α+
i

zR+
⋆ (z)dz = 2

∫ ∞

−∞
dx

∫ α−
i+1

α+
i

dz
zf ′′

⋆ (x)

z − x

= −2

∫ ∞

−∞
dx

∫ α−
i+1

α+
i

dzf ′′
⋆ (x) log(z − x) + 2

∫ ∞

−∞
dx [z log(z − x)]

α−
i+1

α+
i

f ′′
⋆ (x)

= −2

∫ ∞

−∞
dxf ′′

⋆ (x) [(z − x) log(z − x)− z]
α−
i+1

α+
i

+ 2

∫ ∞

−∞
dx [z log(z − x)]

α−
i+1

α+
i

f ′′
⋆ (x)

= 2

∫ ∞

−∞
dxf ′′

⋆ (x)
(
x log(α−

i+1 − x) + α−
i+1

)
− 2

∫ ∞

−∞
dxf ′′

⋆ (x)
(
x log(α+

i − x) + α+
i

)
. (10.25)

For example,∫ ∞

−∞
dxf ′′

⋆ (x)
(
x log(α−

i+1 − x) + α−
i+1

)
= −ℏ2

2
ξi+1 +

∫ ∞

−∞
dxf ′′

⋆ (x)α
−
i+1 log(α

−
i+1 − x)

−
∫ ∞

−∞
dxf ′′

⋆ (x)(α
−
i+1 − x)(log Λ + 1) +

∫ ∞

−∞
dxf ′′

⋆ (x)α
−
i+1

= −ℏ2

2
ξi+1 +

∫ ∞

−∞
dx xf ′′

⋆ (x)(log Λ + 1), (10.26)

where we used ∫ ∞

−∞
dxf ′′

⋆ (x) log(x− y) =

∫ ∞

−∞
dxf ′′

⋆ (x) log(Λ). (10.27)

We thus find that the B-cycle is given by∮
Bi

dz zR⋆(z) = −ℏ2(ξi+1 − ξi). (10.28)
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This reproduces the well-known result of Seiberg-Witten curve. Now let us try to derive the curve

it self from the resolvent. To do so, we need to construct some coordinate system on the curve. A

candidate is ∫ z

0

R⋆(z
′)dz′, (10.29)

but depending on the integral contour, there is an ambiguity, i.e. by going around any A-cycle for

n times, we see that ∫ z

0

R⋆(z
′)dz′ →

∫ z

0

R⋆(z
′)dz′ − 2πin. (10.30)

This logarithmic behavior can be suppressed by taking its exponential,

t±(z) := exp

(
−
∫ z

0

R±
⋆ (z

′)dz′
)
. (10.31)

It is then easy to see that the Seiberg-Witten one-form is given by

λ±sw = zR±
⋆ (z)dz = zd log(t±(z)), (10.32)

which is just the well-known expression. Once we could show that there are only square-root branch

cuts in the resolvent R(z), we can claim that

P (z) = t+(z) + t−(z), (10.33)

is completely a well-defined and holomorphic function on C, and then it has to be a Laurent

polynomial of z. It is also easy to confirm that

t+(z)t−(z) = exp

(
−
∫ z

0

(R+
⋆ (z

′) +R−
⋆ (z

′))dz′
)

= exp

(
−2

∫ z

0

Rreg ⋆(z
′)dz′

)
= 1. (10.34)

t±(z) then satisify the following quadratic equation,

t2 − P (z)t+ 1 = 0, (10.35)

or

t+
1

t
= P (z), (10.36)

which is nothing but the Seiberg-Witten curve. The only remaining thing to do is to show that

P (z) is indeed a polynomial of z.

In the limit of z → ∞, we have

R⋆(z) ∼
1

z

∫ ∞

−∞
f ′′
⋆ (x)dx = −N

z
, (10.37)

and thus

t±(z) → zN , z → ±∞, (10.38)

which indicates that P (z) is a polynomial of z of degree N (as we can further show that there is no

singularity in P (z)).
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Adding matter As discussed before, adding matter deforms the prepotential to

F = −
∫

dxdyf ′′(x)f ′′(y)kΛ(x− y) +

Nf∑
f=1

∫
dxf ′′(x)kΛ(x−mf ). (10.39)

The saddle-point equation is now modified to

− 2

ℏ2

∫
dyf ′′(y)kΛ(x− y) +

1

ℏ2

Nf∑
f=1

kΛ(x−mf ) + xξi + ηi = 0, (10.40)

and ∫
dy

(
f ′′(y)− 1

2

∑
f

δ(y −mf )

)(
(x− y) log

(
x− y

Λ

)
− (x− y)

)
=

ℏ2

2
ξi, (10.41)

∫
dy

(
f ′′(y)− 1

2

∑
f

δ(y −mf )

)
log

(
x− y

Λ

)
= 0, (10.42)

∫
dy

(
f ′′(y)− 1

2

∑
f

δ(y −mf )

)
1

x− y
= 0, (10.43)

for x ∈ Ci.

Since adding matter does not change the pole structure of the instanton partition function, the

A-cycle and B-cycle integral of the resolvent does not change. However, one can further perform a

contour integral around z = mf , (?)∮
mf

dzR⋆(z) =

∫ ∞

−∞
dx

∮
mf

dz
f ′′
⋆ (x)

z − x
= f ′′

⋆ (mf ). (10.44)

The regular part of the resolvent now satisfies

Rreg ⋆(z) = lim
ϵ→0+

1

2
(R⋆(z + iϵ) +R⋆(z − iϵ)) = P.V.

∫
dyf ′′

⋆ (y)
1

z − y
= −1

2

∑
f

1

z −mf

, (10.45)

and thus

t+(z)t−(z) = exp

(
−2

∫ z

0

Rreg ⋆(z
′)dz′

)
=
∏
f

(1− z/mf ). (10.46)

The Seiberg-Witten curve is then modified to

t2 − P (z)t+
∏
f

(1− z/mf ) = 0. (10.47)
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uplift to 5d The computation in 5d is almost parallel. In 4d, the kernel function, kΛ(x) :=
x2

2

(
log |x|

Λ
− 3

2

)
, was determined from

k
(4)
Λ = − 1

x2
, (10.48)

and in 5d, we need to solve

K(4)
Λ (x) = − 1

[x]2
. (10.49)

A candidate for KΛ (up to some integral constants) is

K(x) = −Li3(e−x). (10.50)

(How to relate to the 4d kernel function?)

The resolvent function is now defined as

R(z) =

∫ ∞

−∞

f ′′(x)

1− e−(z−x)
dx. (10.51)

The saddle point equation is almost the same,

− 2

ℏ2

∫
dyf ′′(y)KΛ(x− y) + xξi + ηi = 0. (10.52)

As we have seen in the 4d case that the constant Λ does not affect the final result (one may absorb

it into the integral variable x), we simply use K(x) to perform the computation. Then∫
dyf ′′(y)Li2(e

−(x−y)) =
ℏ2

2
ξ, (10.53)∫

dyf ′′(y) log
(
1− e−(x−y)

)
= 0, (10.54)∫

dyf ′′(y)
e−(x−y)

1− e−(x−y)
= 0. (10.55)

The calculations involving A-cycles remain to be the same,∮
Aa

dzR⋆(z) =

∫ ∞

−∞
dx

∮
Aa

dz
f ′′
⋆ (x)

1− e−(z−x)
= 2πi

∫
Ca
f ′′
⋆ (x)dx = −2πi, (10.56)∮

Aa

dz zR⋆(z) = 2πi

∫
Ca
xf ′′

⋆ (x)dx = −2πiaa, (10.57)

as ∮
dx

1

1− e−x
=

∮
dex

1

ex − 1
= 1. (10.58)

The B-cycle integral also gives the same result.
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The asymptotic behavior with matter is modified to

Rreg ⋆(z) = lim
ϵ→0+

1

2
(R⋆(z + iϵ) +R⋆(z − iϵ)) = P.V.

∫
dyf ′′

⋆ (y)
1

1− e−(z−y)
= −1

2

∑
f

1

1− e−(z−mf )
.

(10.59)

An interesting phenomenon occurs that Rreg ⋆(z) behaves differently in the limit mf → ±∞. Since

we have ∫
dz

1

1− e−(z−m)
= log(em − ez), (10.60)

then

t+(z)t−(z) = exp

(
−2

∫ z

0

Rreg ⋆(z
′)dz′

)
=
∏
f

1− ez−mf

1− e−mf
. (10.61)

The 5d SW curve

t2 − P5d(z)t+
∏
f

1− ez−mf

1− e−mf
= 0. (10.62)

When we take mf → ∞, the corresponding hypermultiplet decouples, but when mf → −∞, an

additional factor ez is introduced into the equation. As the contribution of the Chern-Simons level

to the curve is also given by the form eκz at the same position, one may interpret the movement of

the mass of one hypermultiplet from ∞ to −∞ as changing the Chern-Simons level by one.

10.1 Derivation from the explicit expression of partition function

When we perform the contour integral in the partition function explicitly, we obtain an expression

as a combination of the following factor,

Nλµ(Q) :=
∞∏

i,j=1

(
1−Qqi+j−λi−µj−1

)
. (10.63)

This factor is equivalent to the so-called Nekrasov factor up to the perturbative contribution N∅∅(Q)

(and transpose of Young diagram). The key identity to analyze the thermodynamic behavior of the

partition function is

Nλµ(e
−r(a−b)) = exp

[
1

4

∫ ∞

−∞
dxdyf ′′

λ (x− a|ℏ)f ′′
µ(y − b|ℏ)γℏ(x− y)

]
, (10.64)

with the explicit form of γℏ (in 5d) known as

γℏ(x) :=
∞∑
n=1

1

n

e−rnx

(1− e−rnℏ)(1− ernℏ)
. (10.65)
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11 BCD-type Seiberg-Witten curves

11.1 Example: SO(4) theory

The prepotential of SO(2N + χ) theory is easily computed to

F = −1

8

∫
dxdyf ′′

SO(x)f
′′
SO(y)kΛ(x− y)−

(
1− χ

2

)∫
dxf ′′

SO(x)kΛ(x), (11.1)

where we shall define

ρSO(x) = ϵ1ϵ2

k∑
i=1

(δ(x− ϕi) + δ(x+ ϕi)) , (11.2)

and

fSO(x) = −2ρSO(x) +
N∑
a=1

(|x− aa|+ |x+ aa|) , (11.3)

satisfying fSO(x) = fSO(−x) and ρSO(x) = ρSO(−x).

The prepotential can be identified as that of SU(2N) with Coulomb branch parameters {±aa}
and with 4− 2χ massless hypermultiplets. Therefore we can write the algebraic curve as

Λ2N+χ−2

(
w +

z4−2χ

w

)
= P2N(z), (11.4)

where P2N(z) is symmetric about z ↔ −z, and thus is a polynomial of z2.

For SO(4) theory, the curve is given by

Λ2

(
w +

z4

w

)
= z4 + u1z

2 + u2. (11.5)

In the case of N = 2 and χ = 0, i.e. SO(4) theory, it can be alternatively realized by two

independent SU(2) theories, SO(4)=SU(2)×SU(2).

FSO(4) = FSU(2)1 + FSU(2)2 . (11.6)

11.2 Example: SO(6) theory

In fact, one can redefine

f̃ ′′
SO(x) = f ′′

SO(x) + 2δ(x), (11.7)
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to rewrite

F = −1

8

∫
dxdyf ′′

SO(x)f
′′
SO(y)kΛ(x− y)−

∫
dxf ′′

SO(x)kΛ(x)

= −1

8

∫
dxdyf̃ ′′

SO(x)f̃
′′
SO(y)kΛ(x− y), (11.8)

where we used the even nature of fSO(x) and kΛ(0) = 0. It looks very similar to the prepotential

of SU-type.

f̃SO(x) = −2ρSO(x) + (|x± a1|+ |x± a2|+ |x± a3|) + |x|. (11.9)

11.3 Example: Sp(1) theory

In the case of Sp(N) theory, we instead define

fSp(x) = −2ρSO(x) +
N∑
a=1

(|x− aa|+ |x+ aa|) + 2|x|, (11.10)

and then the prepotential is given by

F = −1

8

∫
dxdyf ′′

Sp(x)f
′′
Sp(y)kΛ(x− y). (11.11)

We see that it is equivalent to a U(2N + 2) theory with Coulomb branch parameters specified to

{±a1,±a2, . . . ,±aN , 0, 0}, however it is not completely correct to simply substitute the above values

into the U(2N + 2) Seiberg-Witten curve.

Note that the branch cuts will be symmetric about z → −z on the z-plane, and we first consider

a map x = φ(z) with

φ : z 7→ z

Λ2
+ β−. (11.12)

The branch cuts are folded to the real axis, belonging to the interval [β−,∞), and the pure imaginary

axis is mapped to (−∞, β−]. To go to a region similar to ∆, we consider the following map,

F̃ =
1

2π
arccos

(
x
∏N

l=1(x− βl)

2ΛN+1

)
. (11.13)

Note that

cosh(x) = cos(ix), (11.14)

and we can analytically continue arccos to the whole complex plane by solving

2a = eix + e−ix, (11.15)
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Figure 3: The cuts in Sp(N) theory (in this case is N = 1) after Zhukowski’s map. The pure

imaginary axis on the z-plane is mapped to the dashed line above.

to have

x =
1

i
log
(
a± i

√
1− a2

)
. (11.16)

We see that when |a| < 1,

a± i
√
1− a2, (11.17)

is on the unit circle, and thus x is a pure real number. While for a < −1,

a±
√
a2 − 1 < 0, (11.18)

and Re(x) = π is fixed. Combining the map φ and F̃ , we can map the z-plane to a ϑ-plane, where

the cuts are all mapped to the intervals
[
n
2
, n+1

2

]
on the real axis (see Figure 3).

With the Zhukowski map,

ϑ = F (z) = F̃ ◦ φ(z) =:
1

2π
arccos

(
PSp(z)

2Λ2N+2

)
, (11.19)

and defining

w := e2πiϑ, (11.20)

we obtained the Seiberg-Witten curve in the Sp-case,

ΛN+1

(
w +

1

w

)
= PSp(z), (11.21)
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where

PSp(z) = (z2 + Λβ−)
N∏
l=1

(z2 + Λβ− − βl). (11.22)

We further note that the endpoints of the branch cut interval, in particular for the first cut β±,

should satisfy

β±
N∏
l=1

(β± − βl) = ±(−1)N2ΛN+1, (11.23)

and therefore,

PSp(z) = z2
N∏
l=1

(z2 − α2
l ) + 2(−1)N+1Λ2N+2, (11.24)

for some parameters αl’s.

11.4 Sp(N) theories in 5d

There are four integrals for the instanton partition function of Sp(N) gauge theories in 5d. De-

pending on the number of instantons k = 2ℓ + χ for ℓ ∈ N and χ = 0, 1, the O+(k) piece of the

partition function is given by the integrand,

Z+
vec =

[2ϵ+]
ℓ

([ϵ1][ϵ2])ℓ+χ

(
N∏
a=1

1

[±aa + ϵ+]

ℓ∏
I=1

[±ϕI ][±ϕI + 2ϵ+]

[±ϕI + ϵ1][±ϕI + ϵ2]

)χ

×
ℓ∏

I=1

1

[±2ϕI + ϵ1][±2ϕI + ϵ2]
∏N

a=1[±ϕI ± aa + ϵ+]

×
∏
I<J

[±ϕI ± ϕJ ][±ϕI ± ϕJ + 2ϵ+]

[±ϕI ± ϕJ + ϵ1][±ϕI ± ϕJ + ϵ2]
, (11.25)

while for the O−(k) piece, when k = 2ℓ+ 1,

Z−
vec =

[2ϵ+]
ℓ

([ϵ1][ϵ2])ℓ+1

ℓ∏
I=1

ch(±ϕI)ch(±ϕI + 2ϵ+)

ch(±ϕI + ϵ1)ch(±ϕI + ϵ2)
∏N

a=1[±ϕI ± aa + ϵ+]

N∏
a=1

1

ch(±aa + ϵ+)

×
ℓ∏

I=1

1

[±2ϕI + ϵ1][±2ϕI + ϵ2]

∏
I<J

[±ϕI ± ϕJ ][±ϕI ± ϕJ + ϵ+]

[±ϕI ± ϕJ + ϵ1][±ϕI ± ϕJ + ϵ2]
, (11.26)

and when k = 2ℓ,

Z−
vec =

[2ϵ+]
ℓ−1ch(2ϵ+)

[ϵ1]ℓ[ϵ2]ℓ[2ϵ1][2ϵ2]
∏N

a=1[±2aa + 2ϵ+]

ℓ−1∏
I=1

[±2ϕI ][±2ϕI + 4ϵ+]

[±2ϕI + 2ϵ1][±2ϕI + 2ϵ2]
∏N

a=1[±ϕI ± aa + ϵ+]

×
ℓ−1∏
I=1

1

[±2ϕI + ϵ1][±2ϕI + ϵ2]

∏
I<J

[±ϕI ± ϕJ ][±ϕI ± ϕJ + 2ϵ+]

[±ϕI ± ϕJ + 2ϵ1][±ϕI ± ϕJ + 2ϵ2]
. (11.27)
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Taking the classical limit, we obtain

E+ =

∫
dxdy

ρSO(x)ρSO(y)

[x− y]2
+

∫
dx2ρSO(x) log

[2x]

Λ
+

N∑
a=1

∫
dxρSO(x) log

[x± aa]

Λ2

+ϵ1ϵ2χ

∫
dx
ρSO(x)

[x]2
. (11.28)

E−
odd =

∫
dxdy

ρSO(x)ρSO(y)

[x− y]2
+

∫
dx2ρSO(x) log

[2x]

Λ
+

N∑
a=1

∫
dxρSO(x) log

[x± aa]

Λ2

+ϵ1ϵ2

∫
dx
ρSO(x)

ch(x)2
, (11.29)

and

E−
even =

∫
dxdy

ρSO(x)ρSO(y)

[x− y]2
+

∫
dx2ρSO(x) log

[2x]

Λ
+

N∑
a=1

∫
dxρSO(x) log

[x± aa]

Λ2

+4ϵ1ϵ2

∫
dx
ρSO(x)

[x]2
. (11.30)

The instanton counting parameter is scaled as q = Λ4N+4. It seems (?) that only E−
even contributes

in the classical limit.

Before we analyze the saddle-point equation, let us first work on the contribution from the

perturbative part. Recall that the perturbative contribution is governed by the function,

γ0(x) =
x3

12
− x2

2
log(RΛ)− 1

R2
Li3(e

−Rx), (11.31)

and we note that it satisfies

d4

dx4
γ0(x) = − R2

4 sinh2(Rx/2)
= − R2

[Rx]
, (11.32)

we can identify γ0(x) as KΛ(Rx) (note that before we worked at R = 1).

Since the perturbative part in general is given by

Zpert({aa};R) ∝ exp

( ∑
α: root

γϵ1,ϵ2(aα|R,Λ)

)
, (11.33)

indeed we can use the profile function

fSp(x) = −ρSO(x) +
N∑
a=1

(|x− aa|+ |x+ aa|) + 2|x|, (11.34)
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instead of ρSO to describe the prepotential simply as

FSp =

∫
dxdyf ′′

Sp(x)f
′′
Sp(y)KΛ(x− y), (11.35)

and the perturbative contribution just gives the remaining terms needed for completing the square.

The saddle-point equation is given by

− 2

ℏ2

∫
dxdyf ′′

Sp(y)KΛ(x− y) +
∑
a

ξa

(∫
C±a

dx xf ′′
Sp(x)± aa

)
+
∑
a

ηa

(∫
C±a

dxf ′′
Sp(x) + 2

)
+(contributions from origin) = 0,

(11.36)

where one may set a0 = 0 to include the additional contributions from four additional

11.5 quiver gauge theory

Now we consider quiver gauge theories with gauge nodes Vi’s connected by bifundamental hyper-

multiplets, which can be graphically represented by edges ei→j. The prepotential is thus given

by

F = −
∑
Vi

∫
dxdyf ′′

i (x)f
′′
i (y)KΛ(x− y) +

N
(i)
f∑

Vi;fi=1

∫
dxf ′′

i (x)KΛ(x−m
(i)
f )

+
∑
ei→j

∫
dxdyf ′′

i (x)f
′′
j (y)KΛ(x− y +me). (11.37)

The saddle-point equation with constraints is thus given by

− 2

ℏ2

∫
dyf ′′

i (y)KΛ(x− y) +
1

ℏ2

N
(i)
f∑

f=1

KΛ(x−m
(i)
f ) + xξ(i)a + η(i)a

+
∑
ei→j

∫
dyf ′′

j (y)KΛ(x− y +me) +
∑
ej→i

∫
dyf ′′

j (y)KΛ(y − x+me) = 0. (11.38)

Taking three-times of derivatives over x, we obtain∫
dy

(
f ′′
i (y)−

1

2

∑
f

δ(y −m
(i)
f )

)
e−(x−y)

1− e−(x−y)
−
∑
ei→j

∫
dyf ′′

j (y)
e−(x−y+me)

1− e−(x−y+me)

−
∑
ej→i

∫
dyf ′′

j (y)
e−(y−x+me)

1− e−(y−x+me)
= 0. (11.39)

From this, we obtain

t
(i)
+ (z)t

(i)
− (z) = P

(i)
matter(z)

∏
ei→j

t(j)reg(z +me)
∏
ej→i

t(j)reg(z −me). (11.40)
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12 Gaiotto form of the curve and Alday-Gaiotto-Tachikawa

duality

Let us start with the Seiberg-Witten curve for SU(2) Nf = 4 described in previous section,

c1
(x− µ1)(x− µ2)

z
+ c2(x− µ3)(x− µ4)z = x2 − u. (12.1)

When all matter is massless, by appropriately rescaling z and u, we reach the following form of the

curve introduced by Witten in arXiv:hep-th/9703166.

(z − 1)(z − z1)x
2 = uz, (12.2)

together with the Seiberg-Witten differential λ = xdz
z
.

The Gaiotto form is obtained by further rescale x→ (1/z)x and the curve now takes the form

x2 =
u

z(z − 1)(z − z1)
, (12.3)

with Seiberg-Witten differential λ = xdz. There are four singualrity, which will be identified to the

punctures in class S theories, at 0, 1, z1 and ∞. We can make use of an SL(2,Z) transformation,

z = az′+b
cz′+d

and x = (cz + d)2x′, to put these poles in a more symmetrical way

x2 =
ũ∏4

i=1(z − zi)
, (12.4)

where in terms of SL(2,Z), z1 = −b/a, z2 = (d − b)/(a − c), z3 = (dz1 − b)/(a − cz1), z4 = −d/c
and ũ = u/(ac(a− c)(a− cz1)), without changing the Seiberg-Witten differential. This system has

an SL(2,Z) symmetry and let us see how it acts on physical quantities of the gauge theory. We go

back to the more traditional form of the SW curve (12.3), and to exchange the singularities at 1

and 0, we transform (z, x) → (1− z, x), under this transformation, z1 goes to 1− z1 and u → −u.
Since it interchanges the branch point 0 and 1, we expect the contour of a and aD also interchanges.

With the transformation λ → −λ, we have a → −aD and aD → a3, together with τ = aD
a

→ − 1
τ
.

Another simple transformation we can have is (z, x) → (1/z,−z2x). This interchanges 0 and ∞,

and put z1 into 1/z1. Considering the contour in details, we find another independent SL(2,Z)
transformation, τ → τ

τ+1
. We see that these SL(2,Z) dualities acting on z-coordinates, in fact

generates the SL(2,Z) transformation on τ , i.e. the S-dualities.

More generally, Witten in arXiv:hep-th/9703166 gave the expression of SW-curves for quiver

gauge theories with gauge group SU(2).

n∏
a=0

(z − za)x
2 = Un−1(z)z, (12.5)

3We will see the minus sign coming out if we carefully trace how the contour is described in the transformed

z-plane.
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where the quiver gauge theory has n SU(2) gauge fields and Un−1(z) is a polynomial of z with degree

n− 1.

Let us go to the massive case. The curve now reads

(z − 1)(z − z1)x
2 − ((µ4 + µ3)z

2 + (µ1 + µ2)z1)x+ (µ3µ4z
2 + µ1µ2z1) = uz. (12.6)

Let us check the transformation z → 1/z for the curve. We clearly see that accompanied with the

transformation (µ1, µ2) ↔ (µ3, µ4) and z1 → 1/z1, without changing x. This duality is inherited

even in the less-matter case, when we put several mass parameters into infinity. For example in the

pure gauge theory, we have

Λ2(z + 1/z) = x2 − u, (12.7)

and it is clearly invariant under z ↔ 1/z. It is not clear how other SL(2,Z) transformations should

be interpreted in the less-matter case.

Let us go back to the massive Nf = 4 case. The general case is

x =
1

z(z − 1)(z − z1)

(
(µ4 + µ3)z

2 + (µ1 + µ2)z ±
√
(µ3 − µ4)2z4 + . . .

)
, (12.8)

where the convention for the Seiberg-Witten differential is λ = xdz. In the generic case, i.e. not all

masses are zero, we have four poles at z = 0, 1, z1,∞. For example, taking the + branch, we can

evaluate the integral
∮
pole

λ as

2z1
√
µ1µ4, (µ1 + µ2 + µ3 + µ4), (µ4 + µ3)z

2
1 + (µ1 + µ2)z1, µ3 + µ4 + |µ3 − µ4|. (12.9)

Let us denote these residues as m1,...,4.

. . .

It was noticed that since the 4d N = 2 SU(2) Nf = 4 SCFT can be constructed from the 6d

(2, 0) SCFT by compactifying on the punctured sphere with 4 full punctures, and at the same time

its partition function can be expressed as the four point function of a CFT on the sphere. Then it

is natural to find a justification for this phenomenon.

Note that in the SU(2) Nf = 4 case, we have double poles around singularities in ϕ2 := x2 (in

the convention of λ = xdz. We would like to identify them as the action of the 2d stress tensor

around the punctures on the sphere. Then we see that

x2
∣∣
pole

= ⟨T (z)⟩|puncture ∼
m2

i

(z − zi)2
+ . . . , (12.10)

This is the typical behavior of a highest weight state with conformal dimension hi = m2
i sitting

at the puncture. From this observation, Gaiotto conculded that it was truly four vertex operators

inserted in the sphere the situation that characterizes the 4d gauge theory, SU(2) Nf = 4.
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In analogy with this prescription, we can consider the pure SU(2) gauge theory, whose SW curve

in the same convention reads,

ϕ2 =
Λ2

z3
+
u

z2
+

Λ2

z
. (12.11)

This quantity should be mapped to the VEV of T (z) =
∑

n Lnz
−n−2 and the most natural scenario

is to have a vector |G⟩ satisfying

L1 |G⟩ = Λ2 |G⟩ . (12.12)

The vector |G⟩ is usually called a Gaiotto state and a lot of studies showed that the inner product

of two Gaiotto states agrees exactly with the Nekrasov’s instanton partition function.

This can be explained in the original AGT relation. By colliding two operators on the Riemann

surface together, we obtained one degenerate operator G. The partition function is now expressed

as

Z →
∫

da ⟨G| a⟩⟨a |G⟩ . (12.13)

However, the naive decoupling limitm→ 0 kills the weight of the integration, i.e. we are integrating

zero over an infinite parameter region. We need to properly define the limitation. On the other

hand, however, we can take out just one piece of the integrand, with proper normalization, (?)

⟨G| a⟩⟨a |G⟩ = Zinstanton. (12.14)

13 Quantum Seiberg-Witten Curve and Resurgent Quan-

tum Mechanics
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