Orbits of Subgroup Actions on Homogeneous Spaces

Jinpeng An

Peking University

SUDA Lie Groups Lectures V

Soochow University, April 28, 2021

Basic Setting

- ▶ Let *G* be a connected real Lie group,
- $H, \Gamma \subset G$ be closed subgroups,
- $X = G/\Gamma$.
- Consider the translation action $H \curvearrowright X$: $H \times X \to X$, $(h, x) \mapsto hx$.

To obtain nontrivial dynamical properties of the H-action, assume

- ► G and H are noncompact,
- Γ is a lattice, namely, a discrete subgroup such that X carries a finite G-invariant measure μ_X.
- Example: $G = SL_n(\mathbb{R}), \ \Gamma = SL_n(\mathbb{Z}), \ X_n := SL_n(\mathbb{R})/SL_n(\mathbb{Z}).$

Basic questions:

- (1) Study properties of *H*-orbits in *X*.
- (2) Study properties of H-invariant measures on X.

The Space $X_n = SL_n(\mathbb{R})/SL_n(\mathbb{Z})$

We mainly concentrate on Question (1) for X_n (although many results mentioned below remain true in more general cases).

 $X_n \cong$ the space of unimodular lattices in \mathbb{R}^n :

- A lattice $\Lambda \subset \mathbb{R}^n$ is called unimodular if $\operatorname{vol}(\mathbb{R}^n/\Lambda) = 1$.
- Example: $\Lambda = \mathbb{Z}^n$.
- ► SL_n(ℝ) acts transitively on the space of unimodular lattices in ℝⁿ, the stabilizer at ℤⁿ is SL_n(ℤ).
- Identify $gSL_n(\mathbb{Z}) \in X_n$ with $g\mathbb{Z}^n$.

 X_n is noncompact. A subset $S \subset X_n$ is called bounded if \overline{S} is compact.

Mahler's Compactness Criterion

 $S \subset X_n$ is bounded iff 0 is an isolated point of $\bigcup_{\Lambda \in S} \Lambda$.

Moore's Ergodicity Theorem (1966)

Let $H \subset SL_n(\mathbb{R})$ be a noncompact closed subgroup. Then the action $H \curvearrowright X_n$ is ergodic, i.e., for any *H*-invariant measurable subset $S \subset X_n$, one has

$$\mu_{X_n}(S) = 0$$
 or $\mu_{X_n}(X_n \smallsetminus S) = 0.$

This implies that for such H,

$$\mu_{X_n}(\{x \in X_n : \overline{Hx} \neq X_n\}) = 0.$$

However, non-dense *H*-orbits are important:

- They reveal the complexity of the action $H \curvearrowright X_n$;
- They are related to number-theoretic questions.

Margulis' Proof of the Oppenheim Conjecture

Theorem (Margulis, 1986)

Every bounded SO(2, 1)-orbit in X_3 is compact.

This implies:

Corollary (Oppenheim Conjecture, 1929)

Let $n \ge 3$, $Q : \mathbb{R}^n \to \mathbb{R}$ be a nondegenerate indefinite quadratic form. Assume Q is not a constant multiple of an integral quadratic form. Then

$$\inf_{v\in\mathbb{Z}^n\smallsetminus\{0\}}|Q(v)|=0.$$

The condition $n \ge 3$ is necessary:

$$|x^2 - (1 + \sqrt{2})^2 y^2| \ge 1, \qquad \forall \ (x, y) \in \mathbb{Z}^2 \smallsetminus \{(0, 0)\}.$$

Sketched Proof of the Corollary. It suffices to prove the n = 3 case.

- ► Let $Q_0(x, y, z) = x^2 + y^2 z^2$. Then $Q = c(Q_0 \circ g)$ for some $c \in \mathbb{R}$ and $g \in SL_3(\mathbb{R})$.
- ► The condition "Q ≍ integral form" implies the SO(2, 1)-orbit of gZ³ ∈ X₃ is noncompact.
- ▶ By Margulis' Theorem, $SO(2, 1)(g\mathbb{Z}^3)$ is unbounded in X_3 .
- ▶ By Mahler's Criterion, 0 is not isolated in SO(2, 1) $g\mathbb{Z}^3 \subset \mathbb{R}^3$, namely, there exist $h_n \in SO(2, 1)$ and $v_n \in \mathbb{Z}^3 \setminus \{0\}$ such that $h_n g v_n \to 0$.

► This implies $|Q(v_n)| = |cQ_0(gv_n)| = |cQ_0(h_ngv_n)| \rightarrow 0.$

Thus

$$\inf_{v\in\mathbb{Z}^n\smallsetminus\{0\}}|Q(v)|=0.$$

Ratner's Orbit Closure Theorem (1991)

Let $H \subset SL_n(\mathbb{R})$ be a connected closed subgroup that is generated by unipotent one-parameter subgroups. Then for every $x \in X_n$, there exists a connected closed subgroup $L \subset SL_n(\mathbb{R})$ with $L \supset H$ s.t. $\overline{Hx} = Lx$.

Examples of *H*:

- Every $h \in H$ is upper triangular with 1's on the diagonal.
- ► *H* is noncompact simple (by Iwasawa decomposition).

Proof of Margulis' Theorem from Ratner's Theorem. Let $x \in X_3$ be such that SO(2, 1)*x* is bounded.

- ▶ By Ratner's Theorem, there exists a connected closed subgroup $L \subset SL_3(\mathbb{R})$ containing SO⁺(2, 1) such that $\overline{SO^+(2, 1)x} = Lx$.
- ▶ SO⁺(2, 1) is a maximal connected proper subgroup of SL₃(\mathbb{R}).
- ► "SO(2, 1)x is bounded" $\implies L \neq SL_3(\mathbb{R}) \implies L = SO^+(2, 1)$ \implies "SO⁺(2, 1)x is closed" \implies "SO(2, 1)x is compact".

Conjectures of Cassels-Swinnerton-Dyer and Margulis

For subgroups without nontrivial unipotent elements, Margulis stated:

Conjecture (Margulis, 2000)

Let $n \ge 3$, $H = \{ \text{diag}(h_1, \dots, h_n) : h_i > 0, h_1 \cdots h_n = 1 \}$. Then every bounded *H*-orbit in X_n is compact.

This is equivalent to (by Mahler's Criterion):

Conjecture (Cassels-Swinnerton-Dyer, 1955)

Let $n \ge 3$, $\{f_1, \ldots, f_n\}$ be a basis of $(\mathbb{R}^n)^*$, and $F = f_1 \cdots f_n$. Assume F is not a constant multiple of an integral polynomial. Then

 $\inf_{v\in\mathbb{Z}^n\smallsetminus\{0\}}|F(v)|=0.$

For n = 2, both statements are not true.

Littlewood's Conjecture

The n = 3 case of the above conjectures imply:

Littlewood's Conjecture (1930s)

For any $a, b \in \mathbb{R}$ *, one has*

$$\inf_{m\in\mathbb{N}}m\cdot\operatorname{dist}(ma,\mathbb{Z})\cdot\operatorname{dist}(mb,\mathbb{Z})=0.$$

Relation to *H*-action:

▶ Mahler's Criterion implies: $\inf_{m \in \mathbb{N}} m \cdot \operatorname{dist}(ma, \mathbb{Z}) \cdot \operatorname{dist}(mb, \mathbb{Z}) = 0$ iff $H^+x_{a,b}$ is unbounded.

Work of Einsiedler-Katok-Lindenstrauss

Theorem (Einsiedler-Katok-Lindenstrauss, 2006)

Let
$$n \ge 3$$
, $H = \{ \text{diag}(h_1, \dots, h_n) : h_i > 0, h_1 \cdots h_n = 1 \}$. Then

 $\dim_H \{x \in X_n : Hx \text{ is bounded}\} = n - 1.$

Remark: There are only countably many compact H-orbits in X_n . So

$$\dim_H \{x \in X_n : Hx \text{ is compact}\} = n - 1.$$

A stronger form of the above theorem implies:

Corollary (Einsiedler-Katok-Lindenstrauss, 2006)

Littlewood's Conjecture holds up to a set of Hausdorff dimension 0, i.e.,

$$\dim_H\left\{(a,b)\in\mathbb{R}^2:\inf_{m\in\mathbb{N}}m\cdot\operatorname{dist}(ma,\mathbb{Z})\cdot\operatorname{dist}(mb,\mathbb{Z})>0\right\}=0.$$

One-parameter Subgroup Actions: Bounded Orbits

Let $H = {\exp(t\xi) : t \in \mathbb{R}} \subset SL_n(\mathbb{R})$, where $\xi \in \mathfrak{sl}_n(\mathbb{R})$.

Theorem (Ratner, 1991)

If *H* is unipotent, then the set $\{x \in X_n : \overline{Hx} \neq X_n\}$ is contained in a countable union of proper submanifolds of X_n .

Theorem (Kleinbock-Margulis, 1996)

If H is diagonalizable, then

 $\dim_H \{x \in X_n : Hx \text{ is bounded}\} = \dim X_n.$

Conjecture (A.-Guan-Kleinbock, 2015)

Let H_1, H_2, \ldots be countably many diagonalizable one-parameter subgroups of $SL_n(\mathbb{R})$. Then

 $\dim_H \{x \in X_n : all \ H_k x \ are \ bounded\} = \dim X_n.$

- ► Motivation: Schmidt's Conjecture in Diophantine approximation.
- The n = 2 case is known.

Theorem (A.-Guan-Kleinbock, 2015)

The conjecture holds for n = 3.

For arbitrary *n*, partial result is proved by Guan-Wu (2018).

One-parameter Subgroup Actions: Divergent Forward Orbits

- Let $H^+ = {\exp(t\xi) : t \ge 0} \subset \operatorname{SL}_n(\mathbb{R}).$
- ► For $x \in X_n$, H^+x is divergent if for any compact subset $K \subset X_n$, there exists $t_K > 0$ such that " $t > t_K$ " \implies " $\exp(t\xi)x \notin K$ ".
- Denote $D_{\xi}(X_n) = \{x \in X_n : H^+x \text{ is divergent}\}.$
- Moore's Ergodicity Theorem $\implies \mu_{X_n}(D_{\xi}(X_n)) = 0.$

Theorem (Margulis, 1971)

If *H* is unipotent, then $D_{\xi}(X_n) = \emptyset$.

Theorem (Guan-Shi, 2020)

In general, $\dim_H D_{\xi}(X_n) < \dim X_n$.

Example: Let $n = 2, \xi = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Then $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ SL₂(\mathbb{Z}) $\in D_{\xi}(X_2)$ iff *a* and *b* are linearly dependent over \mathbb{Q} . Thus dim_{*H*} $D_{\xi}(X_2) = 2$. In contrast, one has:

Theorem (Das-Fishman-Simmons-Urbánski, 2019+)

Let
$$n \ge 3$$
, and $p, q \ge 1$ with $p + q = n$. Let $\xi_{p,q} = \begin{pmatrix} \frac{1}{p}I_p \\ -\frac{1}{q}I_q \end{pmatrix}$. Then

$$\dim_H D_{\xi_{p,q}}(X_n) = \dim X_n - \frac{pq}{n}.$$

- Partial results known before:
 - ▶ (Cheung 2011): *n* = 3.
 - (Cheung-Chevallier 2016): p = 1.
 - ► (Kadyrov-Kleinbock-Lindenstrauss-Margulis 2017): "≤".
- ► This is related to singular matrices in Diophantine approximation. DFSU's theorem is equivalent to: $\dim_H \operatorname{Sing}(p,q) = pq(1 - \frac{1}{p+q})$.

One-parameter Subgroup Actions: Non-dense Orbits

Let $H \subset SL_n(\mathbb{R})$ be a diagonalizable one-parameter subgroup.

Question

Let $S \subset X_n$ be a subset. Under what conditions on S does one have

$$\dim_H \{x \in X_n : \overline{Hx} \cap S = \emptyset\} = \dim X_n?$$

Theorem

This holds if one of the following conditions hold:

- S is H-invariant, closed, and has measure 0 (Kleinbock-Margulis, 1996);
- (2) S is finite (Kleinbock, 1998);
- (3) *S* is countable (A.-Guan-Kleinbock, 2020+).

A more general version of (3) implies:

Theorem (A.-Guan-Kleinbock, 2020+)

Let *M* be a Riemannian locally symmetric space of noncompact type, $S \subset M$ be a countable subset, and $x \in M \setminus S$. Then

 $\dim_H \{\ell \in \mathbb{P}(T_x M) : \overline{\exp_x(\ell)} \cap S = \emptyset\} = \dim M - 1.$

Relation to Diophantine Approximation

Dirichlet's Approximation Theorem for Matrices

For any $A \in M_{p \times q}(\mathbb{R})$ and $Q \in \mathbb{R}_{\geq 1}$, there exists $v \in \mathbb{Z}^q \setminus \{0\}$ with $\|v\|_{\infty} \leq Q$ such that $\operatorname{dist}_{\infty}(Av, \mathbb{Z}^p) < Q^{-q/p}$. In particular, there exist infinitely many $v \in \mathbb{Z}^q \setminus \{0\}$ such that $\|v\|_{\infty}^{q/p} \cdot \operatorname{dist}_{\infty}(Av, \mathbb{Z}^p) < 1$.

Definition

Let $A \in M_{p \times q}(\mathbb{R})$.

- ► *A* is Dirichlet improvable if there exist $\epsilon \in (0, 1)$ and $Q_0 \ge 1$ such that for any $Q \ge Q_0$, there exists $v \in \mathbb{Z}^q \setminus \{0\}$ with $||v||_{\infty} \le Q$ such that dist_∞(Av, \mathbb{Z}^p) < $\epsilon Q^{-q/p}$.
- A is singular if for any \$\epsilon \epsilon (0,1)\$, there exists \$Q_0 ≥ 1\$ such that for any \$Q ≥ Q_0\$, there exists \$v ∈ Z^q \ {0}\$ with \$\|v\|_{\infty} ≤ Q\$ such that dist_{\(\infty\)}(Av, Z^p) < \$\epsilon Q^{-q/p}\$.</p>
- A is badly approximable if $\inf_{v \in \mathbb{Z}^q \setminus \{0\}} \|v\|_{\infty}^{q/p} \cdot \operatorname{dist}_{\infty}(Av, \mathbb{Z}^p) > 0.$

Denote

- ▶ $DI(p,q) = \{A \in M_{p \times q}(\mathbb{R}) : A \text{ is Dirichlet improvable}\},\$
- ► $\operatorname{Sing}(p,q) = \{A \in \operatorname{M}_{p \times q}(\mathbb{R}) : A \text{ is singular}\},\$
- ▶ $\operatorname{Bad}(p,q) = \{A \in \operatorname{M}_{p \times q}(\mathbb{R}) : A \text{ is badly approximable} \}.$

It is know that

- ▶ $DI(p,q) \supset Sing(p,q) \cup Bad(p,q).$
- ▶ $DI(1,1) = Sing(1,1) \cup Bad(1,1)$, $Sing(1,1) = \mathbb{Q}$.
- $\operatorname{Leb}(\operatorname{DI}(p,q)) = 0.$
- dim_H Bad(p,q) = pq (Schmidt, 1969).
- ► dim_H Sing(p,q) = $pq(1 \frac{1}{p+q})$ for $(p,q) \neq (1,1)$ (Das-Fishman-Simmons-Urbánski, 2019+).

Mahler's Criterion implies:

Dani Correspondence

For $A \in M_{p \times q}(\mathbb{R})$ *,*

- $A \in \text{Bad}(p,q)$ iff H^+x_A is bounded;
- $A \in \text{Sing}(p,q)$ iff H^+x_A is divergent;
- $A \in \mathrm{DI}(p,q)$ iff $\omega(x_A) \cap S = \emptyset$, where

$$\omega(x_A) = \{ y \in X_n : \exists t_k \to +\infty \text{ s.t. } h_{t_k} x_A \to y \},\$$

 $S = \bigcup_{\sigma \in S_n} U_{\sigma} x_0$, each U_{σ} a maximal unipotent subgroup of $SL_n(\mathbb{R})$.

THANK YOU!