
Orbits of Subgroup Actions on Homogeneous Spaces

Jinpeng An

Peking University

SUDA Lie Groups Lectures V

Soochow University, April 28, 2021

1 / 20



Basic Setting

I Let G be a connected real Lie group,
I H,Γ ⊂ G be closed subgroups,
I X = G/Γ.
I Consider the translation action H y X: H × X → X, (h, x) 7→ hx.

To obtain nontrivial dynamical properties of the H-action, assume
I G and H are noncompact,
I Γ is a lattice, namely, a discrete subgroup such that X carries a

finite G-invariant measure µX .
I Example: G = SLn(R), Γ = SLn(Z), Xn := SLn(R)/SLn(Z).

Basic questions:

(1) Study properties of H-orbits in X.

(2) Study properties of H-invariant measures on X.
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The Space Xn = SLn(R)/SLn(Z)

We mainly concentrate on Question (1) for Xn (although many results
mentioned below remain true in more general cases).

Xn ∼= the space of unimodular lattices in Rn:
I A lattice Λ ⊂ Rn is called unimodular if vol(Rn/Λ) = 1.
I Example: Λ = Zn.
I SLn(R) acts transitively on the space of unimodular lattices in Rn,

the stabilizer at Zn is SLn(Z).
I Identify gSLn(Z) ∈ Xn with gZn.

Xn is noncompact. A subset S ⊂ Xn is called bounded if S is compact.

Mahler’s Compactness Criterion
S ⊂ Xn is bounded iff 0 is an isolated point of

⋃
Λ∈S Λ.
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Almost Every Point Has Dense H-orbit

Moore’s Ergodicity Theorem (1966)
Let H ⊂ SLn(R) be a noncompact closed subgroup. Then the action
H y Xn is ergodic, i.e., for any H-invariant measurable subset S ⊂ Xn,
one has

µXn(S) = 0 or µXn(Xn r S) = 0.

This implies that for such H,

µXn({x ∈ Xn : Hx 6= Xn}) = 0.

However, non-dense H-orbits are important:
I They reveal the complexity of the action H y Xn;
I They are related to number-theoretic questions.
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Margulis’ Proof of the Oppenheim Conjecture

Theorem (Margulis, 1986)
Every bounded SO(2, 1)-orbit in X3 is compact.

This implies:

Corollary (Oppenheim Conjecture, 1929)
Let n > 3, Q : Rn → R be a nondegenerate indefinite quadratic form.
Assume Q is not a constant multiple of an integral quadratic form. Then

inf
v∈Znr{0}

|Q(v)| = 0.

The condition n > 3 is necessary:

|x2 − (1 +
√

2)2y2| > 1, ∀ (x, y) ∈ Z2 r {(0, 0)}.
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Sketched Proof of the Corollary. It suffices to prove the n = 3 case.
I Let Q0(x, y, z) = x2 + y2 − z2. Then Q = c(Q0 ◦ g) for some

c ∈ R and g ∈ SL3(R).
I The condition “Q � integral form” implies the SO(2, 1)-orbit of

gZ3 ∈ X3 is noncompact.
I By Margulis’ Theorem, SO(2, 1)(gZ3) is unbounded in X3.
I By Mahler’s Criterion, 0 is not isolated in SO(2, 1)gZ3 ⊂ R3,

namely, there exist hn ∈ SO(2, 1) and vn ∈ Z3 r {0} such that
hngvn → 0.

I This implies |Q(vn)| = |cQ0(gvn)| = |cQ0(hngvn)| → 0.

Thus
inf

v∈Znr{0}
|Q(v)| = 0.
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Ratner’s Theorem

Ratner’s Orbit Closure Theorem (1991)
Let H ⊂ SLn(R) be a connected closed subgroup that is generated by
unipotent one-parameter subgroups. Then for every x ∈ Xn, there exists
a connected closed subgroup L ⊂ SLn(R) with L ⊃ H s.t. Hx = Lx.

Examples of H:
I Every h ∈ H is upper triangular with 1’s on the diagonal.
I H is noncompact simple (by Iwasawa decomposition).

Proof of Margulis’ Theorem from Ratner’s Theorem. Let x ∈ X3 be such
that SO(2, 1)x is bounded.

I By Ratner’s Theorem, there exists a connected closed subgroup
L ⊂ SL3(R) containing SO+(2, 1) such that SO+(2, 1)x = Lx.

I SO+(2, 1) is a maximal connected proper subgroup of SL3(R).
I “SO(2, 1)x is bounded” =⇒ L 6= SL3(R) =⇒ L = SO+(2, 1)

=⇒ “SO+(2, 1)x is closed” =⇒ “SO(2, 1)x is compact”.
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Conjectures of Cassels-Swinnerton-Dyer and Margulis

For subgroups without nontrivial unipotent elements, Margulis stated:

Conjecture (Margulis, 2000)
Let n > 3, H = {diag(h1, . . . , hn) : hi > 0, h1 · · · hn = 1}. Then every
bounded H-orbit in Xn is compact.

This is equivalent to (by Mahler’s Criterion):

Conjecture (Cassels-Swinnerton-Dyer, 1955)
Let n > 3, {f1, . . . , fn} be a basis of (Rn)∗, and F = f1 · · · fn. Assume F
is not a constant multiple of an integral polynomial. Then

inf
v∈Znr{0}

|F(v)| = 0.

For n = 2, both statements are not true.
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Littlewood’s Conjecture

The n = 3 case of the above conjectures imply:

Littlewood’s Conjecture (1930s)
For any a, b ∈ R, one has

inf
m∈N

m · dist(ma,Z) · dist(mb,Z) = 0.

Relation to H-action:
I For a, b ∈ R, let xa,b =

(
1 a

1 b
1

)
SL3(Z) ∈ X3.

I Let H+ =

{(
h1

h2
(h1h2)−1

)
: h1, h2 > 1

}
.

I Mahler’s Criterion implies: inf
m∈N

m · dist(ma,Z) · dist(mb,Z) = 0

iff H+xa,b is unbounded.
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Work of Einsiedler-Katok-Lindenstrauss

Theorem (Einsiedler-Katok-Lindenstrauss, 2006)
Let n > 3, H = {diag(h1, . . . , hn) : hi > 0, h1 · · · hn = 1}. Then

dimH{x ∈ Xn : Hx is bounded} = n− 1.

Remark: There are only countably many compact H-orbits in Xn. So

dimH{x ∈ Xn : Hx is compact} = n− 1.

A stronger form of the above theorem implies:

Corollary (Einsiedler-Katok-Lindenstrauss, 2006)
Littlewood’s Conjecture holds up to a set of Hausdorff dimension 0, i.e.,

dimH

{
(a, b) ∈ R2 : inf

m∈N
m · dist(ma,Z) · dist(mb,Z) > 0

}
= 0.
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One-parameter Subgroup Actions: Bounded Orbits

Let H = {exp(tξ) : t ∈ R} ⊂ SLn(R), where ξ ∈ sln(R).

Theorem (Ratner, 1991)
If H is unipotent, then the set {x ∈ Xn : Hx 6= Xn} is contained in a
countable union of proper submanifolds of Xn.

Theorem (Kleinbock-Margulis, 1996)
If H is diagonalizable, then

dimH{x ∈ Xn : Hx is bounded} = dim Xn.
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Conjecture (A.-Guan-Kleinbock, 2015)
Let H1,H2, . . . be countably many diagonalizable one-parameter
subgroups of SLn(R). Then

dimH{x ∈ Xn : all Hkx are bounded} = dim Xn.

I Motivation: Schmidt’s Conjecture in Diophantine approximation.
I The n = 2 case is known.

Theorem (A.-Guan-Kleinbock, 2015)
The conjecture holds for n = 3.

For arbitrary n, partial result is proved by Guan-Wu (2018).
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One-parameter Subgroup Actions: Divergent Forward Orbits

I Let H+ = {exp(tξ) : t > 0} ⊂ SLn(R).
I For x ∈ Xn, H+x is divergent if for any compact subset K ⊂ Xn,

there exists tK > 0 such that “t > tK” =⇒ “ exp(tξ)x /∈ K”.
I Denote Dξ(Xn) = {x ∈ Xn : H+x is divergent}.
I Moore’s Ergodicity Theorem =⇒ µXn(Dξ(Xn)) = 0.

Theorem (Margulis, 1971)
If H is unipotent, then Dξ(Xn) = ∅.

Theorem (Guan-Shi, 2020)
In general, dimH Dξ(Xn) < dim Xn.
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Example: Let n = 2, ξ =
(

1
−1
)
. Then

(
a b
c d

)
SL2(Z) ∈ Dξ(X2) iff

a and b are linearly dependent over Q. Thus dimH Dξ(X2) = 2.

In contrast, one has:

Theorem (Das-Fishman-Simmons-Urbánski, 2019+)

Let n > 3, and p, q > 1 with p + q = n. Let ξp,q =

(
1
p Ip

− 1
q Iq

)
. Then

dimH Dξp,q(Xn) = dim Xn −
pq
n
.

I Partial results known before:
I (Cheung 2011): n = 3.
I (Cheung-Chevallier 2016): p = 1.
I (Kadyrov-Kleinbock-Lindenstrauss-Margulis 2017): “6 ”.

I This is related to singular matrices in Diophantine approximation.
DFSU’s theorem is equivalent to: dimH Sing(p, q) = pq(1− 1

p+q).
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One-parameter Subgroup Actions: Non-dense Orbits

Let H ⊂ SLn(R) be a diagonalizable one-parameter subgroup.

Question
Let S ⊂ Xn be a subset. Under what conditions on S does one have

dimH{x ∈ Xn : Hx ∩ S = ∅} = dim Xn?

Theorem
This holds if one of the following conditions hold:

(1) S is H-invariant, closed, and has measure 0
(Kleinbock-Margulis, 1996);

(2) S is finite (Kleinbock, 1998);

(3) S is countable (A.-Guan-Kleinbock, 2020+).
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A more general version of (3) implies:

Theorem (A.-Guan-Kleinbock, 2020+)
Let M be a Riemannian locally symmetric space of noncompact type,
S ⊂ M be a countable subset, and x ∈ M r S. Then

dimH{` ∈ P(TxM) : expx(`) ∩ S = ∅} = dim M − 1.
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Relation to Diophantine Approximation

Dirichlet’s Approximation Theorem for Matrices
For any A ∈ Mp×q(R) and Q ∈ R>1, there exists v ∈ Zq r {0} with
‖v‖∞ 6 Q such that dist∞(Av,Zp) < Q−q/p. In particular, there exist
infinitely many v ∈ Zq r {0} such that ‖v‖q/p

∞ · dist∞(Av,Zp) < 1.

Definition
Let A ∈ Mp×q(R).

I A is Dirichlet improvable if there exist ε ∈ (0, 1) and Q0 > 1 such
that for any Q > Q0, there exists v ∈ Zq r {0} with ‖v‖∞ 6 Q
such that dist∞(Av,Zp) < εQ−q/p.

I A is singular if for any ε ∈ (0, 1), there exists Q0 > 1 such that for
any Q > Q0, there exists v ∈ Zq r {0} with ‖v‖∞ 6 Q such that
dist∞(Av,Zp) < εQ−q/p.

I A is badly approximable if inf
v∈Zqr{0}

‖v‖q/p
∞ · dist∞(Av,Zp) > 0.
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Denote
I DI(p, q) = {A ∈ Mp×q(R) : A is Dirichlet improvable},
I Sing(p, q) = {A ∈ Mp×q(R) : A is singular},
I Bad(p, q) = {A ∈ Mp×q(R) : A is badly approximable}.

It is know that
I DI(p, q) ⊃ Sing(p, q) ∪ Bad(p, q).
I DI(1, 1) = Sing(1, 1) ∪ Bad(1, 1), Sing(1, 1) = Q.
I Leb

(
DI(p, q)

)
= 0.

I dimH Bad(p, q) = pq (Schmidt, 1969).
I dimH Sing(p, q) = pq(1− 1

p+q) for (p, q) 6= (1, 1)

(Das-Fishman-Simmons-Urbánski, 2019+).
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I Let n = p + q.

I For A ∈ Mp×q(R), let xA =
(

Ip A
0 Iq

)
SLn(Z) ∈ Xn.

I Let H+ =

{
ht :=

(
e

t
p Ip

e−
t
q Iq

)
: t > 0

}
⊂ SLn(R).

Mahler’s Criterion implies:

Dani Correspondence
For A ∈ Mp×q(R),

I A ∈ Bad(p, q) iff H+xA is bounded;
I A ∈ Sing(p, q) iff H+xA is divergent;
I A ∈ DI(p, q) iff ω(xA) ∩ S = ∅, where

ω(xA) = {y ∈ Xn : ∃ tk → +∞ s.t. htk xA → y},

S =
⋃
σ∈Sn

Uσx0, each Uσ a maximal unipotent subgroup of SLn(R).
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THANK YOU !
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