Orbits of Subgroup Actions on Homogeneous Spaces

Jinpeng An

Peking University

SUDA Lie Groups Lectures V

Soochow University, April 28, 2021

Basic Setting

- \blacktriangleright Let *G* be a connected real Lie group,
- \blacktriangleright *H*, $\Gamma \subset G$ be closed subgroups,
- \blacktriangleright *X* = *G*/Γ.
- ▶ Consider the translation action *H* \curvearrowright *X*: *H* \times *X* \rightarrow *X*, (*h*, *x*) \mapsto *hx*.

To obtain nontrivial dynamical properties of the *H*-action, assume

- \blacktriangleright *G* and *H* are noncompact,
- \blacktriangleright Γ is a lattice, namely, a discrete subgroup such that *X* carries a finite *G*-invariant measure μ_X .
- Example: $G = SL_n(\mathbb{R}), \Gamma = SL_n(\mathbb{Z}), X_n := SL_n(\mathbb{R})/SL_n(\mathbb{Z}).$

Basic questions:

- (1) Study properties of *H*-orbits in *X*.
- (2) Study properties of *H*-invariant measures on *X*.

The Space $X_n = SL_n(\mathbb{R})/SL_n(\mathbb{Z})$

We mainly concentrate on Question (1) for X_n (although many results mentioned below remain true in more general cases).

 $X_n \cong$ the space of unimodular lattices in \mathbb{R}^n :

- A lattice $\Lambda \subset \mathbb{R}^n$ is called unimodular if vol $(\mathbb{R}^n/\Lambda) = 1$.
- Example: $\Lambda = \mathbb{Z}^n$.
- \blacktriangleright SL_n(R) acts transitively on the space of unimodular lattices in \mathbb{R}^n , the stabilizer at \mathbb{Z}^n is $SL_n(\mathbb{Z})$.
- ► Identify $gSL_n(\mathbb{Z}) \in X_n$ with $g\mathbb{Z}^n$.

X_n is noncompact. A subset *S* \subset *X_n* is called bounded if \overline{S} is compact.

Mahler's Compactness Criterion

 $S \subset X_n$ *is bounded iff* 0 *is an isolated point of* $\bigcup_{\Lambda \in S} \Lambda$.

Moore's Ergodicity Theorem (1966)

Let $H \subset SL_n(\mathbb{R})$ *be a noncompact closed subgroup. Then the action H* \sim *X*_n *is ergodic, i.e., for any H-invariant measurable subset* $S \subset X_n$, *one has*

$$
\mu_{X_n}(S)=0 \quad or \quad \mu_{X_n}(X_n\smallsetminus S)=0.
$$

This implies that for such *H*,

$$
\mu_{X_n}(\{x \in X_n : \overline{Hx} \neq X_n\}) = 0.
$$

However, non-dense *H*-orbits are important:

- In They reveal the complexity of the action $H \cap X_n$;
- \blacktriangleright They are related to number-theoretic questions.

Margulis' Proof of the Oppenheim Conjecture

Theorem (Margulis, 1986)

Every bounded SO(2, 1)*-orbit in X*³ *is compact.*

This implies:

Corollary (Oppenheim Conjecture, 1929)

Let $n \geq 3$, $Q : \mathbb{R}^n \to \mathbb{R}$ *be a nondegenerate indefinite quadratic form. Assume Q is not a constant multiple of an integral quadratic form. Then*

$$
\inf_{v\in\mathbb{Z}^n\smallsetminus\{0\}}|Q(v)|=0.
$$

The condition $n \geqslant 3$ is necessary:

$$
|x^{2} - (1 + \sqrt{2})^{2}y^{2}| \geq 1, \qquad \forall (x, y) \in \mathbb{Z}^{2} \setminus \{(0, 0)\}.
$$

Sketched Proof of the Corollary. It suffices to prove the $n = 3$ case.

- ► Let $Q_0(x, y, z) = x^2 + y^2 z^2$. Then $Q = c(Q_0 ∘ g)$ for some $c \in \mathbb{R}$ and $g \in SL_3(\mathbb{R})$.
- In The condition " $Q \approx$ integral form" implies the SO(2, 1)-orbit of $g\mathbb{Z}^3 \in X_3$ is noncompact.
- \blacktriangleright By Margulis' Theorem, SO(2, 1)($g\mathbb{Z}^3$) is unbounded in X_3 .
- ► By Mahler's Criterion, 0 is not isolated in SO(2, 1) $g\mathbb{Z}^3 \subset \mathbb{R}^3$, namely, there exist $h_n \in SO(2, 1)$ and $v_n \in \mathbb{Z}^3 \setminus \{0\}$ such that $h_n g v_n \to 0.$

In This implies $|O(v_n)| = |cO_0(gv_n)| = |cO_0(h_n g v_n)| \rightarrow 0$.

Thus

$$
\inf_{v\in\mathbb{Z}^n\setminus\{0\}}|Q(v)|=0.
$$

Ratner's Orbit Closure Theorem (1991)

Let $H \subset SL_n(\mathbb{R})$ *be a connected closed subgroup that is generated by unipotent one-parameter subgroups. Then for every* $x \in X_n$ *, there exists a connected closed subgroup* $L \subset SL_n(\mathbb{R})$ *with* $L \supset H$ *s.t.* $\overline{Hx} = Lx$.

Examples of *H*:

- Every $h \in H$ is upper triangular with 1's on the diagonal.
- \blacktriangleright *H* is noncompact simple (by Iwasawa decomposition).

Proof of Margulis' Theorem from Ratner's Theorem. Let $x \in X_3$ be such that $SO(2, 1)x$ is bounded.

- \triangleright By Ratner's Theorem, there exists a connected closed subgroup $L \subset SL_3(\mathbb{R})$ containing $SO^+(2, 1)$ such that $SO^+(2, 1)x = Lx$.
- \triangleright SO⁺(2, 1) is a maximal connected proper subgroup of SL₃(R).
- \triangleright "SO(2, 1)*x* is bounded" \implies *L* \neq SL₃(R) \implies *L* = SO⁺(2, 1) \implies "SO⁺(2, 1)*x* is closed" \implies "SO(2, 1)*x* is compact".

Conjectures of Cassels-Swinnerton-Dyer and Margulis

For subgroups without nontrivial unipotent elements, Margulis stated:

Conjecture (Margulis, 2000)

Let $n \ge 3$, $H = \{diag(h_1, ..., h_n) : h_i > 0, h_1 \cdots h_n = 1\}$. Then every *bounded H-orbit in Xⁿ is compact.*

This is equivalent to (by Mahler's Criterion):

Conjecture (Cassels-Swinnerton-Dyer, 1955)

Let $n \geq 3$, $\{f_1, \ldots, f_n\}$ *be a basis of* $(\mathbb{R}^n)^*$ *, and* $F = f_1 \cdots f_n$ *. Assume* F *is not a constant multiple of an integral polynomial. Then*

 $\inf_{v\in\mathbb{Z}^n\smallsetminus\{0\}}|F(v)|=0.$

For $n = 2$, both statements are not true.

Littlewood's Conjecture

The $n = 3$ case of the above conjectures imply:

Littlewood's Conjecture (1930s)

For any a, b \in R*, one has*

$$
\inf_{m \in \mathbb{N}} m \cdot \text{dist}(ma, \mathbb{Z}) \cdot \text{dist}(mb, \mathbb{Z}) = 0.
$$

Relation to *H*-action:

• For
$$
a, b \in \mathbb{R}
$$
, let $x_{a,b} = \begin{pmatrix} 1 & a \\ & 1 & b \\ & & 1 \end{pmatrix}$ SL₃(\mathbb{Z}) $\in X_3$.
\n• Let $H^+ = \left\{ \begin{pmatrix} h_1 & & \\ & h_2 & \\ & & (h_1 h_2)^{-1} \end{pmatrix} : h_1, h_2 \ge 1 \right\}$.

► Mahler's Criterion implies: $\inf_{m \in \mathbb{N}} m \cdot \text{dist}(ma, \mathbb{Z}) \cdot \text{dist}(mb, \mathbb{Z}) = 0$ iff $H^+x_{a,b}$ is unbounded.

Work of Einsiedler-Katok-Lindenstrauss

Theorem (Einsiedler-Katok-Lindenstrauss, 2006)

Let
$$
n \ge 3
$$
, $H = \{diag(h_1, ..., h_n) : h_i > 0, h_1 \cdots h_n = 1\}$. Then

 $\dim_H \{x \in X_n : Hx \text{ is bounded}\}=n-1.$

Remark: There are only countably many compact *H*-orbits in *Xn*. So

 $\dim_H \{x \in X_n : Hx \text{ is compact}\} = n - 1.$

A stronger form of the above theorem implies:

Corollary (Einsiedler-Katok-Lindenstrauss, 2006)

Littlewood's Conjecture holds up to a set of Hausdorff dimension 0*, i.e.,*

$$
\dim_H \left\{ (a,b) \in \mathbb{R}^2 : \inf_{m \in \mathbb{N}} m \cdot \text{dist}(ma, \mathbb{Z}) \cdot \text{dist}(mb, \mathbb{Z}) > 0 \right\} = 0.
$$

One-parameter Subgroup Actions: Bounded Orbits

Let $H = \{ \exp(t\xi) : t \in \mathbb{R} \} \subset SL_n(\mathbb{R})$, where $\xi \in \mathfrak{sl}_n(\mathbb{R})$.

Theorem (Ratner, 1991)

If H is unipotent, then the set $\{x \in X_n : \overline{Hx} \neq X_n\}$ *is contained in a countable union of proper submanifolds of Xn.*

Theorem (Kleinbock-Margulis, 1996)

If H is diagonalizable, then

 $\dim_H \{x \in X_n : Hx \text{ is bounded}\} = \dim X_n.$

Conjecture (A.-Guan-Kleinbock, 2015)

Let H_1, H_2, \ldots *be countably many diagonalizable one-parameter subgroups of* SL*n*(R)*. Then*

 $\dim_H \{x \in X_n : all H_k x \text{ are bounded}\} = \dim X_n.$

 \triangleright Motivation: Schmidt's Conjecture in Diophantine approximation.

 \blacktriangleright The $n = 2$ case is known.

Theorem (A.-Guan-Kleinbock, 2015)

The conjecture holds for $n = 3$ *.*

For arbitrary *n*, partial result is proved by Guan-Wu (2018).

One-parameter Subgroup Actions: Divergent Forward Orbits

- ► Let $H^+ = \{ \exp(t\xi) : t \ge 0 \} \subset SL_n(\mathbb{R})$.
- ► For $x \in X_n$, H^+x is divergent if for any compact subset $K \subset X_n$, there exists $t_K > 0$ such that " $t > t_K$ " \implies " $\exp(t\xi)x \notin K$ ".
- ► Denote $D_{\xi}(X_n) = \{x \in X_n : H^+x \text{ is divergent}\}.$
- ► Moore's Ergodicity Theorem $\implies \mu_{X_n}(D_{\xi}(X_n)) = 0.$

Theorem (Margulis, 1971)

If H is unipotent, then $D_{\xi}(X_n) = \emptyset$ *.*

Theorem (Guan-Shi, 2020)

In general, dim_{*H*} $D_{\xi}(X_n) < \dim X_n$.

Example: Let $n = 2$, $\xi = \begin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$. Then $\begin{pmatrix} a & b \ c & d \end{pmatrix}$ SL₂(\mathbb{Z}) $\in D_{\xi}(X_2)$ iff *a* and *b* are linearly dependent over Q. Thus dim_{*H*} $D_{\xi}(X_2) = 2$. In contrast, one has:

Theorem (Das-Fishman-Simmons-Urbánski, 2019+)

Let
$$
n \ge 3
$$
, and $p, q \ge 1$ with $p + q = n$. Let $\xi_{p,q} = \begin{pmatrix} \frac{1}{p}I_p & 0 \\ -\frac{1}{q}I_q & 0 \end{pmatrix}$. Then
\n
$$
\dim_H D_{\xi_{p,q}}(X_n) = \dim X_n - \frac{pq}{n}.
$$

- \blacktriangleright Partial results known before:
	- \blacktriangleright (Cheung 2011): $n = 3$.
	- \blacktriangleright (Cheung-Chevallier 2016): $p = 1$.
	- \blacktriangleright (Kadyrov-Kleinbock-Lindenstrauss-Margulis 2017): " \leq ".
- \triangleright This is related to singular matrices in Diophantine approximation. DFSU's theorem is equivalent to: dim_{*H*} Sing(*p*, *q*) = $pq(1 - \frac{1}{p+q})$.

One-parameter Subgroup Actions: Non-dense Orbits

Let $H \subset SL_n(\mathbb{R})$ be a diagonalizable one-parameter subgroup.

Question

Let $S ⊂ X_n$ *be a subset. Under what conditions on S does one have*

 $\dim_H \{x \in X_n : \overline{Hx} \cap S = \emptyset\} = \dim X_n$?

Theorem

This holds if one of the following conditions hold:

- (1) *S is H-invariant, closed, and has measure* 0 (Kleinbock*-*Margulis, 1996);
- (2) *S is finite* (Kleinbock, 1998);
- (3) *S is countable* (A.*-*Guan*-*Kleinbock, 2020*+*).

A more general version of (3) implies:

Theorem (A.-Guan-Kleinbock, 2020+)

Let M be a Riemannian locally symmetric space of noncompact type, S ⊂ *M* be a countable subset, and $x \in M \setminus S$. Then

 $\dim_H \{ \ell \in \mathbb{P}(T_xM) : \overline{\exp_x(\ell)} \cap S = \varnothing \} = \dim M - 1.$

Relation to Diophantine Approximation

Dirichlet's Approximation Theorem for Matrices

For any $A \in M_{p \times q}(\mathbb{R})$ *and* $Q \in \mathbb{R}_{\geq 1}$ *, there exists* $v \in \mathbb{Z}^q \setminus \{0\}$ *with* $\|v\|_{\infty}$ ≤ Q such that dist_∞(*Av*, \mathbb{Z}^p) < Q^{-*q/p*}. In particular, there exist *infinitely many* $v \in \mathbb{Z}^q \setminus \{0\}$ such that $\|v\|_\infty^{q/p} \cdot \text{dist}_\infty(Av, \mathbb{Z}^p) < 1$.

Definition

Let $A \in M_{p \times q}(\mathbb{R})$.

- A is Dirichlet improvable if there exist $\epsilon \in (0, 1)$ and $Q_0 \ge 1$ such that for any $Q \geq Q_0$, there exists $v \in \mathbb{Z}^q \setminus \{0\}$ with $||v||_{\infty} \leqslant Q$ such that $dist_{\infty}(Av, \mathbb{Z}^p) < \epsilon Q^{-q/p}$.
- A is singular if for any $\epsilon \in (0, 1)$, there exists $Q_0 \ge 1$ such that for any $Q \geq Q_0$, there exists $v \in \mathbb{Z}^q \setminus \{0\}$ with $||v||_{\infty} \leq Q$ such that dist_∞ $(Av, \mathbb{Z}^p) < \epsilon Q^{-q/p}$.
- A is badly approximable if $\inf_{v \in \mathbb{Z}^q \setminus \{0\}} ||v||_{\infty}^{q/p} \cdot \text{dist}_{\infty}(Av, \mathbb{Z}^p) > 0.$

Denote

- ► DI $(p, q) = {A \in M_{p \times q}(\mathbb{R}) : A \text{ is Dirichlet improved} }$
- \blacktriangleright Sing(*p*, *q*) = { $A \in M_{p \times q}(\mathbb{R})$: *A* is singular},
- ► Bad $(p, q) = {A \in M_{p \times q}(\mathbb{R}) : A \text{ is badly approximable}}$.

It is know that

- \triangleright DI(*p*, *q*) ⊃ Sing(*p*, *q*) ∪ Bad(*p*, *q*).
- \triangleright DI(1, 1) = Sing(1, 1) ∪ Bad(1, 1), Sing(1, 1) = Q.
- \blacktriangleright Leb $(DI(p,q))=0.$
- \blacktriangleright dim_H Bad(p, q) = pq (Schmidt, 1969).
- ► dim_{*H*} Sing(*p*, *q*) = *pq*(1 $\frac{1}{p+q}$) for (*p*, *q*) \neq (1, 1) (Das-Fishman-Simmons-Urbánski, 2019+).

$$
\triangleright \text{ Let } n = p + q.
$$
\n
$$
\triangleright \text{ For } A \in M_{p \times q}(\mathbb{R}), \text{ let } x_A = \left(\begin{smallmatrix} I_p & A \\ 0 & I_q \end{smallmatrix}\right) \text{SL}_n(\mathbb{Z}) \in X_n.
$$
\n
$$
\triangleright \text{ Let } H^+ = \left\{ h_t := \left(\begin{smallmatrix} e^{\frac{t}{p}} I_p \\ e^{-\frac{t}{q}} I_q \end{smallmatrix}\right) : t \geq 0 \right\} \subset \text{SL}_n(\mathbb{R}).
$$

Mahler's Criterion implies:

Dani Correspondence

For $A \in M_{p \times q}(\mathbb{R})$ *,*

- ▶ *A* ∈ Bad(*p*, *q*) *iff* H^+x_A *is bounded*;
- ▶ *A* ∈ Sing(*p*, *q*) *iff* H^+x_A *is divergent;*
- \blacktriangleright *A* ∈ DI(*p*, *q*) *iff* $\omega(x_A) \cap S = \emptyset$ *, where*

$$
\omega(x_A) = \{ y \in X_n : \exists t_k \to +\infty \text{ s.t. } h_{t_k} x_A \to y \},
$$

 $S = \left(\int U_{\sigma} x_0$, each U_{σ} a maximal unipotent subgroup of $SL_n(\mathbb{R})$. $\sigma \in S_n$

THANK YOU!