
Lie groups and
representations

David Vogan

Introduction

Groups

Repn theory

Rep examples

Sph harmonics

Loc symm spaces

Lie groups and representations

David Vogan

Department of Mathematics
Massachusetts Institute of Technology

Soochow University
20 October, 2020



Lie groups and
representations

David Vogan

Introduction

Groups

Repn theory

Rep examples

Sph harmonics

Loc symm spaces

Outline

What’s representation theory about?

Abstract symmetry and groups

Representation theory

Examples of representations

Spherical harmonics

Locally symmetric spaces



Lie groups and
representations

David Vogan

Introduction

Groups

Repn theory

Rep examples

Sph harmonics

Loc symm spaces

The talk in one slide

Two topics. . .
1. GROUPS: an abstract way to study symmetry.
2. REPRESENTATIONS: linear algebra to study groups.

REPRESENTATIONS connect groups (which are hard)
to linear algebra (which is easy).
Talk will be about three examples of all these things:

1. EVEN AND ODD FUNCTIONS.
2. SPHERICAL HARMONICS.
3. SHIMURA VARIETIES.

In (1), the group is {±1}.

In (2), the group is SO(3), rotations of space.

In (3), the group is Sp(2n,R), invertible 2n × 2n
matrices preserving a symplectic form.
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Two cheers for linear algebra

My favorite mathematics is linear algebra.

It is hard enough to describe interesting things.

It is easy enough to calculate with.

If you have a linear map S : V → V you can calculate
the eigenvalues and eigenvectors of S.

First example: V = functions on R,
S = change of variables x 7→ −x.

This means S(x3 − 2x2 − 7x + 1) = −x3 − 2x2 + 7x + 1.

The eigenvalues of S are +1 and −1.

Eigenspace for +1 is even functions (like cos(x), x2).

Eigenspace for −1 is odd functions (like sin(x), x3).

Linear algebra says: to study sign changes in x, write
any function as even function plus odd function.
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Translation and Fourier transform

Second example: V = functions on R, Tt = translate by t .

Simultaneous eigenvectors of (commuting) linear maps Tt

are multiples of e iλx : Tt (e iλx) = e iλ(x−t) = e−iλte iλx .

The exponential function e iλx is an eigenvector of Tt

with eigenvalue e−iλt .

Linear algebra says: to study translation in x, write
any function as “sum” of exponentials.

Fourier transform and Laplace transform do that: the
“sum” is an integral.



Lie groups and
representations

David Vogan

Introduction

Groups

Repn theory

Rep examples

Sph harmonics

Loc symm spaces

The third cheer for linear algebra

Best part about linear algebra is noncommutativity. . .

Try to study both translation Tt and sign change S.

Problem: functions e iλx are neither even nor odd.

Representation theory idea: look at smallest subspaces
preserved by both S and Tt .

W±λ = Span
(

e iλx , e−iλx︸       ︷︷       ︸
eigenfunctions of Tt

)
= Span

(
cos(λx)︸   ︷︷   ︸

even

, sin(λx)︸  ︷︷  ︸
odd

)
.

These two bases of W±λ are good for different things.

First is convenient for solving differential equations.

Second is convenient for describing a vibrating string.

No one basis is good for everything.

What is essential is the two-dimensional space W±λ.
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Plan of the talk

Remind you of the definition of symmetry group.

Talk about continuous groups, called Lie groups.

Outline Gelfand program for using representation theory
in any problem about groups.

Define group representation carefully.

Describe all representations for the simplest groups
discussed so far (sign changes and translation on R).

Talk about spherical harmonics: use representations to
describe functions on the sphere S2 ⊂ R3.

Talk about Shimura varieties: how representations can
illuminate manifolds arising in number theory.
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Symmetry group of a triangle

A basic idea in mathematics is symmetry.

A symmetry of X is a way of rearranging X so that
nothing you care about changes.
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The symmetry group of the triangle consists of these six
rearrangements: nothing, two rotations, three reflections.
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Symmetry group of R

Suppose you care only about distance in R.

What rearrangements of R preserve distance?

Once possibility is translation by t : Tt (x) = x + t .

Another is sign change: S(x) = −x.

Sign change is the same as reflection around 0.

This suggests reflection around s: Ss(x) = 2s − x.

Translations Tt and reflections Ss are all
distance-preserving rearrangements of R.

They make up the motion group of R, M(1) = R o O(1).

The continuous families of symmetries Tt and Ss make
M(1) a Lie group.
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Symmetry group of a vector space V .

Suppose V is a finite-dimensional real vector space.

This means we care about addition of vectors and
scalar multiplication.

A symmetry of V is a rearrangement T : V → V
respecting these two operations.
This means

1. T : V → V is invertible (rearrangement).
2. T(v + w) = T(v) + T(w) (v ,w ∈ V) (respect addition).
3. T(λ · v) = λ · T(v) (v ∈ V , λ ∈ R) (respect scalar mult.).

That is, the group of symmetries of V is the group
GL(V) of invertible linear maps from V to V .

Since linear maps come in continuous families, GL(V)
is also a Lie group.
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Approaching symmetry

Normal person’s approach to symmetry:
1. look at something interesting;
2. find the symmetries.

Normal approach standard model in physics.

Explains everything that you can see without LIGO.

Mathematician’s approach to symmetry:
1. find all multiplication tables for abstract groups;
2. pick an interesting abstract group;
3. find something it’s the symmetry group of;
4. decide that something must be interesting.

Math approach Conway group (which has
8,315,553,613,086,720,000 elements) and Leech lattice
(critical for packing 24-dimensional cannonballs).

Anyway, this is a math lecture. . .
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How many Lie groups are there?: examples
Math approach to continuous symmetry:

how do you classify Lie groups?

Better to isolate part of the question:
how do you classify compact simple Lie groups?

Three infinite families of examples:

1. O(n) = n × n real orthogonal matrices
= R-linear distance symmetries of Rn

2. U(n) = n × n complex unitary matrices
= C-linear distance symmetries of Cn

3. Sp(n) = n × n quaternionic unitary matrices
= H-linear distance symmetries of Hn

These are compact (nearly) simple Lie groups:

dim O(n) = n(n − 1)/2, dim U(n) = n2, dim Sp(n) = 2n2 + n.

For p + q = n, U(n) acts on Grassmannian manifold Mp,q.

dim Mp,q = 2pq, χ(Mp,q) =

(
n
p

)
,

n∑
p=0

χ(Mp,q) = 2n.
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How many Lie groups are there?: classification
Found a compact almost simple Lie group O(n,D) for each
n ≥ 1 and finite-dimensional division algebra D/R.

O(n,R) = O(n) dimension n(n − 1)/2

O(n,C) = U(n) dimension n2

O(n,H) = Sp(n) dimension 2n2 + n

Theorem (Cartan-Killing) With five exceptions, every
compact simple Lie group appears above. Exceptions:

G2 dim 14 F4 dim 52
E6 dim 78 E7 dim 133

E8 dim 248
G2 ⊂ SO(7) acts on S6; maybe related to unsolved problem

is S6 is a complex manifold?

Look for interesting manifolds where these groups act.

E8 acts on compact manifolds M0, M112, M128 of dims 0, 112, 128.

χ(M0) = 1, χ(M112) = 120, χ(M128) = 135, 1 + 120 + 135 = 28

G2 acts on M0, M8, χ(M0) = 1, χ(M8) = 3, 1 + 3 = 22.
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Gelfand program. . .

. . . for using groups to do other math.

Say G is a group of symmetries of X .

Step 1: LINEARIZE. X  V(X) vec space of fns on X .
Now G acts on V(X) by linear maps.

Step 2: DIAGONALIZE. Decompose V(X) into minimal
G-invariant subspaces.

Step 3: REPRESENTATION THEORY. Understand all
ways that G can act by linear maps.

Step 4: GELFAND’S GREAT IDEA. Use understanding
of V(X) to answer questions about X .

One hard step is 3: how can G act by linear maps?
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Definition of representation

G group; representation of G is
1. (complex) vector space V , and
2. collection of linear maps {π(g) : V → V | g ∈ G}

subject to π(g)π(h) = π(gh), π(e) = identity.

Reformulate: group homomorphism π : G → GL(V).

Subrepresentation is subspace W ⊂ V such that
π(g)W = W (all g ∈ G).

Rep is irreducible if only subreps are {0} , V .

Irreducible subrepresentations are minimal nonzero
subspaces of V preserved by all π(g).
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Infinite-dimensional complications

Linear algebra on infinite-dimensional spaces is harder.

For example, eigenvalues make sense, but there is no
theorem saying every linear map has eigenvalues.

Functional analysis addresses these difficulties.
A Hilbert space is a complex vector space V with an
inner product 〈 , 〉 : V × V → C so that

1. 〈v ,w〉 = 〈w, v〉, 〈au + bv ,w〉 = a〈u,w〉+ b〈v ,w〉
2. 〈v , v〉 ≥ 0, with equality only if v = 0.
3. The metric d(v ,w) = 〈v − w, v − w〉1/2 makes V a

complete metric space.

A unitary representation of a topological group G is a
representation (π,V) of G on a Hilbert space V , so that

1. The map G × V → V , (g, v) 7→ π(g)v is continuous; and
2. π preserves the inner product: 〈π(g)v , π(g)w〉 = 〈v ,w〉.

A unitary representation (π,V) is irreducible if V has
exactly two closed invariant subspaces.
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Diagonalizing groups

Irreducible representations are a group-theory version
of eigenspaces.

There’s a theorem like eigenspace decomposition:

Theorem. Suppose G is a finite group.
1. ∃ finitely many irreducible reps τ1, . . . , τ` of G.
2. Any rep π of G is sum of copies of irreducibles:

π = nπ(τ1)τ1 + nπ(τ2)τ2 + · · ·+ nπ(τ`)τ`.

3. Nonnegative integers nπ(τ) uniquely determined by π.
4. |G| = (dim τ1)2 + · · ·+ (dim τ`)

2.
5. G is abelian ⇐⇒ dim τj = 1, all j.

Dimensions of irreducible representations
! how non-abelian G is.

Extending this theorem to infinite groups encounters
problems of infinite-dimensional linear algebra.
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Diagonalizing infinite groups

Hilbert spaces and unitary representations address
problems of infinite-dimensional linear algebra.

Theorem. If G is a separable locally compact group
1. ∃ nice measure space Ĝ of irreducible unitary reps of G.
2. Unitary rep π of G is direct integral of copies of irrs:

π =

∫
Ĝ

nπ(τ)dµπ(τ).

3. Multiplicities nπ(τ), measure dµπ(τ) determined by π.
4. G is abelian ⇐⇒ dim τ = 1, all τ ∈ Ĝ.

Making this theorem precise and true requires more
functional analysis work.

Good reference is Dixmier’s book Les C∗-algèbres et leurs
représentations, translated to English as C∗-algebras.



Lie groups and
representations

David Vogan

Introduction

Groups

Repn theory

Rep examples

Sph harmonics

Loc symm spaces

Representations of O(1) = {±1}

Now look at some irr unitary reps, see what they say
about Gelfand’s idea for understanding symmetry.

Start with the two-element group O(1) = {e,S} of
symmetries of R; S(x) = −x.

Representation (π,V) of O(1) is π : O(1)→ GL(V).

Same thing: linear map π(S) : V → V , π(S)2 = IV .

Same thing: direct sum decomposition V = V+ ⊕ V−
(±1 eigenspaces of π(S)).

Two irr reps of O(1): (τ±,C), τ±(S) = ±1

Decomposition of any rep (π,V) as sum of irrs is
V = V+ ⊕ V−: V± = sum of copies of τ±.

Example: V = fns on R ⊃ V+ = even fns, V− = odd fns.

Gelfand idea: think about even and odd functions separately.

In computing
∫ 1
−1 f(x)dx, case of odd f is easier.



Lie groups and
representations

David Vogan

Introduction

Groups

Repn theory

Rep examples

Sph harmonics

Loc symm spaces

Representations of the motion group of R

Two kinds of distance-preserving symmetries of R.

First kind is translation by t , Tt (x) = x + t .

Second kind is reflection around s: Ss(x) = 2s − x.

Union of two kinds is motion group M(1).

By thinking about functions on R, easily found
two-dimensional reps τ±λ of M(1) on

W±λ = Span(e iλx , e−iλx) = Span(cos(λx), sin(λx)) (λ > 0)

Use W±λ ' C2 from either basis: τ±λ is irr unitary rep.

1-diml irr unitary reps τ+0, τ−0, τ±0(Tt ) = 1, τ±0(Ss) = ±1.

M̂(1) = {τ±λ | λ > 0} ∪ {τ+0, τ−0}

Topology/measure space structure: R>0∪ double point.
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Reps of M(1) and functions on R
We now know irr reps of motion group M(1) for R.
Gelfand idea: understand motions using fns on R.
Reasonable choice: L2(R), Hilbert space of functions.
Get unitary rep of M(1) on L2(R).
Decompose L2(R) into irr reps of M(1):

Theorem (Plancherel) L2(R) =
∫
R>0

V±λ dλ.

This is direct integral of (almost) all irr unitary reps of M(1).

Explicitly: any function f ∈ L2(R) is

f(x) =

∫
R>0

[a+(λ)e iλx + a−(λ)e−iλx ] dλ.

Here the Fourier transform of f is

f̂(ξ) =

a+(ξ) (ξ > 0)

a−(−ξ) (ξ < 0).

Are 1-diml reps τ±0 in Plancherel thm? is not well-posed: msre = 0.
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Representations of SO(3), part 1

SO(3) = rotations of R3

= orthogonal matrices of size 3, determinant one

= {3 × 3 real g | det(g) = 1, g · gt = I3}

Symmetries preserving origin and distance and orientation.

Have rep τ1 of SO(3) on three-dimensional space

V1 = C-valued linear functions on R3 = Span(x, y, z).

The representation τ1 is unitary and irreducible.

Similarly, get a natural representation σm on space

Sm = polynomials on R3 homogeneous of degree m

= Span(xm, xm−1y, . . . , zm).

This representation has dimension (m + 1)(m + 2)/2.
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Representations of SO(3), part 2

m ≥ 2: rep (σm,Sm) (polys of degree m) is not irreducible.

Has SO(3)-invariant subspace (x2 + y2 + z2)Sm−2 of
polynomials divisible by (x2 + y2 + z2).

Theorem. Let (σm,Sm) be the rep of SO(3) on polynomials
homogeneous of degree m. Write

r2 = x2 + y2 + z2, ∆ = (∂/∂x)2 + (∂/∂y)2 + (∂/∂z)2.

1. r2Sm−2 is an SO(3)-invariant subspace of Sm.
2. The quotient representation τm of SO(3) on

Vm = Sm/(r2Sm−2) is irreducible, of dimension 2m + 1.
3. The orthogonal complement of r2Sm−2 in Sm is

Hm = {p ∈ Sm | ∆p = 0},
harmonic polys of degree m, also of dim 2m + 1.

4. ŜO(3) = irr unitary reps of SO(3) = {τm | m ≥ 0}

One irr rep τm for each odd dimension 2m + 1.
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Reps of SO(3) and functions on S2

SO(3) is symmetries of the two-diml sphere S2.

Gelfand idea: understand rotations with functions on S2.

Get unitary rep of SO(3) on L2(S2).

Decompose L2(S2) into irr reps of SO(3):

Theorem. L2(S2) =
∑

m≥0 Vm.

Vm ' Hm ' restrictions to S2 of harmonic polys of degree m.

V0 = C = constant functions

V1 = SpanC(x, y, z)

V2 = SpanC(xy, yz, xz, x2 − y2, y2 − z2)
...

Theorem. Vm is the m(m + 1)-eigenspace of Laplacian ∆S2 .

Reason: ∆S2 commutes with SO(3), so eigenspaces SO(3) reps.

Theorem helps solve Schrödinger equation for hydrogen.
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What’s an automorphic form?

Number theory is about integer solutions of polynomials.

Explicitly: P1, . . . ,Pm polys in ξ1, . . . , ξn with Z coeffs.

Seek ξ ∈ Zn satisfying Pi(ξ) = 0, all i.

Intersect alg surface S(P) = {x ∈ Rn | Pi(x) = 0} with Zn.

Coord-free way: (fixed S(P) ⊂ Rn) ∩ (varying lattice L ⊂ Rn).

Approximate definition: automorphic form on GL(n) is a
function on the space Z(n) = lattices in Rn.

GL(n,R)/GL(n,Z) ' Z(n),

g ∈ GL(n,R) 7→ lattice spanned by columns of g.

GL(n,R) acts by translation on functions on Z(n).

number theory functions on Z(n)︸                 ︷︷                 ︸
automorphic forms

 reps of GL(n,R)︸                ︷︷                ︸
automorphic reps

.

Gelfand, Langlands: reps of GL(n,R) control aut forms.
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Locally symmetric spaces

Interesting automorphic forms are (nearly) rotationally fixed.

So (nearly) functions on X(n) = O(n)\GL(n,R)/GL(n,Z).

HOW TO THINK ABOUT X(n).

O(n)\GL(n,R) ' positive definite quad forms in n variables

' positive definite symmetric n × n matrices
'log all symmetric n × n matrices ' Rn(n−1)/2.

Universal cover1 of X(n) = O(n)\GL(n,R) ' Rn(n−1)/2.

π1(X(n)) = GL(n,Z); X(n) is an Eilenberg-MacLane space.

Consequence: topology of X(n) is controlled by the
(number-theoretic!) structure of the discrete group GL(n,Z).

Basic number theory problem: understand de Rham
cohomology H∗(X(n),R).

Want to use representation theory to approach this problem.

1Torsion in GL(n,Z) makes this statement slightly incorrect
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Cohomology of locally symmetric spaces

X(n) = O(n)\GL(n,R)/GL(n,Z) locally symmetric space.

Cohom(X )! derived functors(loc const functions on X ).

For reps: functor (π,V) 7→ VG has derived functors Hi(G, π).

Theorem (Matsushima) If X = K\G/Γ is a compact locally
symmetric manifold, then

Hi(X ,R) '
∑
π∈Ĝ

mZ (π) · Hi(G, π).

Here mZ (π) = mult of π in aut forms on Z = G/Γ.

X(n) not smooth compact, so thm doesn’t apply. But almost.

GELFAND: find irr reps π with Hi(G, π) , 0, then find mZ (π).

Irr unitary rep π ∈ Ĝ with Hi(G, π) , 0 is cohomological.

Matsushima: cohom(loc symm X )! cohom reps.

Come to question: what does a cohomological rep look like?
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Cohomological representations. . .
. . . were described by V-Zuckerman (1984). Here are results
for G = GL(n,R) (Speh 1983), n = 2m + 1 (to simplify).

First example: trivial rep (τ,C).

By definition H0(G, τ) = CG = C.

Hi(G, τ) ' Hi
deRham(O(n)\U(n)).

Need also Hi(GL(p,C), τ) ' Hi
deRham(U(p)).

Theorem (Speh 1983). Subgroups of GL(2m + 1,R) which are
centralizers of compact tori are

L = L(m0,m1, . . . ,mr ) ' GL(2m0 + 1,R) × · · · × GL(mr ,C),

m = m0 + · · ·+ mr . From each such subgroup one can construct an
irreducible unitary rep π(m0, . . . ,mr ) so that

H i+N(G, π(m0, . . . ,mr )) ' H i(L , τ(L))

'
∑

i0+···+ir=i

H i0
deRh(O(2m0 + 1)\U(2m0 + 1)) ⊗ · · · ⊗ H ir

deRh(U(mr )).

Here N = (1/2)(dim(G/L) − dim(K/L ∩ K)), a shift making the
right side satisfy Poincaré duality.
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Summary of automorphic ideas

Number theory for G locally symm K\G/Γ.

Topology of K\G/Γ! cohomological reps of G.

cohom rep of G! L = CentG(T) (T compact torus).

H∗(G, π(L)) = H∗deRham(UL/L ∩ K).

H∗deRham(UL/L ∩ K) understood by Lie group theory.

Examples of UL/L ∩ K : E8 manifolds M0, M112, M128 of
Euler characteristics 1, 120, 135 summing to 28.

These worlds are full of interesting facts that we
understand only a little.
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