$\overline{\mathcal{S}}$

Classical groups and their representations - an introduction

 $\sqrt{2}$

 $\overline{}$

Chen-Bo Zhu

SUDA Lie Group Lecture Series (November 3, 2020)

1 A group should be understood by its actions

- One can tell a lot on the real nature of a group by knowing what possible ^places it may appear as ^a group of transformations, namely through its actions.
- Out of all actions, <u>linear actions</u> (by invertible linear transformations) are by far the simplest.
	- They are (called) representations.

 $\sqrt{2}$

• All actions can be converted in some sense to linear actions by the following scheme:

– If $G \cap X$, let

 $\sqrt{2}$

 $\overline{}$

 $C(X) =$ space of functions on X.

(think $C(X)$ as the full collection of observables on X) Then G acts on $C(X)$ by:

$$
(g \cdot F)(x) = F(g^{-1} \cdot x), \quad g \in G.
$$

– Other vector spaces may also be considered, including \ast $L^2(X)$ (if there is a suitable measure on X),

[∗] space of sections of ^a vector bundle on X, and

[∗] various cohomological spaces on ^X .

• To understand ^a linear operator, one should perform spectral analysis (i.e., eigenspace decomposition).

 $\sqrt{2}$

- To understand ^a representation, one should complete the same task:
	- analogue of an eigenspace: irreducible representation
	- harmonic analysis: decompose ^a given representation into irreducible components.

$\sqrt{2}$ 2 The orthogonal group and its natural representation

The (compact and pseudo) orthogonal groups

• $O(m)$: the group of linear transformations on \mathbb{R}^m preserving the distance (squared)

$$
x_1^2 + \dots + x_m^2.
$$

• More generally $O(p, q)$: the group of linear transformations on \mathbb{R}^m preserving the "pseudo distance"

$$
x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_m^2,
$$

where $p + q = m$.

Remarks.

 $\sqrt{2}$

 $\overline{}$

- \mathbb{R}^m is where the orthogonal group $O(m)$ resides:
	- called the natural representation
- \mathbb{R}^m is more "basic" than $O(m)$:

$$
- \dim \mathbb{R}^m = m
$$

$$
-\dim O(m) = \frac{m(m-1)}{2}
$$

• We should strive to construct representations of $O(m)$ from the more basic entity \mathbb{R}^m .

We will focus on the natural action of $O(m)$ on \mathbb{R}^m .

• It divides \mathbb{R}^m into orbits:

$$
S^{m-1}(r) = \{x \in \mathbb{R}^m : x_1^2 + \dots + x_m^2 = r^2\}, \quad r \ge 0.
$$

• Each $S^{m-1}(r)$ is a homogeneous space for $O(m)$, and

$$
\bullet\hspace{10pt}
$$

 $\overline{}$

 $\sqrt{2}$

$$
S^{m-1}(r) \simeq S^{m-1}(r'), \quad r, r' > 0,
$$

as $O(m)$ homogeneous spaces.

Take a typical orbit, say the unit sphere $S^{m-1} = S^{m-1}(1)$, and consider the corresponding representation of $O(m)$ on a space of functions on S^{m-1} , say $L^2(S^{m-1})$.

Theory of spherical harmonics:

 $\sqrt{2}$

- $L^2(S^{m-1}) = \sum_{k \in \mathbb{Z}_{\geq 0}} H_k$, where H_k consists of the restrictions to S^{m-1} of harmonic polynomial functions on \mathbb{R}^m of total degree k.
- H_k may also be characterized as the eigenspace of the Laplace-Beltrami operator of eigenvalue $-k(m + k - 2)$.
- $\overline{}$ • The spaces H_k are all irreducible under $O(m)$.

Actually, it is better to consider the representation of $O(m)$ on $L^2(\mathbb{R}^m)$:

 $\sqrt{2}$

- The space $L^2(\mathbb{R}^m)$ allows more symmetries (such as dilation, Fourier transform).
- Theory of spherical harmonics is ^a part of the spectral decomposition of $L^2(\mathbb{R}^m)$ as a representation of $O(m)$.

More precisely, we have the isotypic decomposition

 $\sqrt{2}$

$$
L^{2}(\mathbb{R}^{m}) = \sum_{\lambda \in \text{Irr}(O(m))} L^{2}(\mathbb{R}^{m})_{\lambda} = \sum_{\lambda \in \text{Irr}(O(m))} L^{2}(\mathbb{R}^{m}; \lambda') \otimes V_{\lambda}.
$$

- $L^2(\mathbb{R}^m; \lambda')$ is the space of multiplicities of λ , which carries additional symmetries.
- $L^2(\mathbb{R}^m; \lambda') \neq 0$ if and only if $\lambda \simeq H_k$, for some $k \in \mathbb{Z}_{\geq 0}$.

3 Going beyond the natural representation

 $\sqrt{2}$

- An obvious way to go beyond the natural representation of $O(m)$ on \mathbb{R}^m is to consider the <u>direct sum</u> of (say) *n* copies of \mathbb{R}^m , which is $M_{m,n}(\mathbb{R})$, the space of $m \times n$ real matrices.
- Thus $O(m)$ acts on $M_{m,n}(\mathbb{R})$, now by matrix multiplication on the left.
- As in $L^2(\mathbb{R}^m)$, we now consider $L^2(M_{m,n}(\mathbb{R}))$.

• Now in $M_{m,n}(\mathbb{R})$, there is more "space" for $O(m)$ to move around, and hence $L^2(M_{m,n}(\mathbb{R}))$ can "accommodate" more representations of $O(m)$.

 $\sqrt{2}$

 $\overline{}$

• In fact all irreducible representations of $O(m)$ will appear in $L^2(M_{m,n}(\mathbb{R}))$ as soon as $n \geq m$.

4 From compact orthogonal groups to pseudo orthogonal groups

• Consider the pseudo orthogonal group $O(p, q)$ and its natural action on \mathbb{R}^m , where $m = p + q$. The inner product is

$$
(x,x) = x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_m^2.
$$

- The orbits are of the form $(x, x) = t$: four different types.
	- [∗] roughly depending on the sign of ^t;

 $\sqrt{2}$

- $*$ two orbits for $t = 0$ (cone minus the origin, and the origin).
- \int – This leads to a more complicated structure of $L^2(\mathbb{R}^m)$ as a representation of $O(p, q)$.

- Representations of $O(p, q)$ on these orbits are all part of spectral analysis of $L^2(\mathbb{R}^m)$.
- Similarly for the $O(p,q)$ representation on $L^2(M_{m,n}(\mathbb{R}))$.
- Due to the non-compact nature of $O(p, q)$, many issues arise:
	- finite dimensional vs infinite dimensional;
	- unitary versus non-unitary.

 $\sqrt{2}$

 $\overline{}$

• We shall consider all (smooth) representations.

5 A basic idea in spectral analysis

- An important way to decompose a representation is to find operators which commute with the group action.
	- the commuting or intertwining algebra.

 $\sqrt{2}$

 $\overline{}$

• A very good scenario is when the commuting algebra comes from a group action.

• An even better scenario is when they are mutual centralizers under ^a larger group action.

 $\sqrt{2}$

 $\overline{}$

• This is indeed the case for the $O(p, q)$ representation $L^2(M_{m,n}(\mathbb{R}))$: there is a commuting action of the metaplectic $\operatorname{group} \; Sp$ $\overline{}$ $(2n, \mathbb{R})$ on $L^2(M_{m,n}(\mathbb{R}))$, which are the

"hidden" symmetries

Example: extra symmetry by an SL $\overline{}$ $(2,\mathbb{R})$ action on $L^2(\mathbb{R}^m)$.

 $\sqrt{2}$

- The representation is called an <u>oscillator</u> representation, denoted by ω .
- We describe the representation ω by generators of $SL(2,\mathbb{R})$:

$$
m_a = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}, n_b = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, \sigma = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
$$

 $(\omega(m_a)f)(x) = |a|^{\frac{p+q}{2}} f(ax),$ (normalized dilation) $(\omega(n_b)f)(x) = e^{\frac{ib}{2}(x,x)}f(x),$ (multiplication by an $O(p, q)$ -invariant function) $(\omega(\sigma)f)(x) = (\frac{1}{2\pi})^{\frac{p+q}{2}} \int_{R^m} e^{-i(x,y)} f(y) dy.$ (Fourier transform)

 $\sqrt{2}$

6 An remarkable phenomenon: Howe duality

- Consider the space $\mathcal{S}(M_{m,n}(\mathbb{R}))$ of Schwartz class functions on $M_{m,n}(\mathbb{R}).$
- This is a representation of $O(p,q) \times Sp$ $\overline{}$ $(2n,\mathbb{R}).$
	- $O(p, q)$ acts naturally.

 $\sqrt{2}$

- $-\widetilde{Sp}(2n,\mathbb{R})$ acts by "hidden symmetries".
- Denote this representation by $\omega_{m,n}$: the <u>smooth oscillator</u> representation.

- We consider quotient representations of $\omega_{m,n}$.
- Questions:

 $\sqrt{2}$

- What representation π of $O(p, q)$ may appear as a quotient of $\omega_{m,n}$?
- What representation σ of $\widetilde{Sp}(2n,\mathbb{R})$ may appear as a quotient of $\omega_{m,n}$?

Dual pair correspondence:

 $\sqrt{2}$

- Given $\pi \in \text{Irr}(O(p,q))$ and $\sigma \in \text{Irr}(Sp)$ $\overline{}$ $(2n,\mathbb{R}))$, there is at most one way for $\pi \otimes \sigma$ to appear as $O(p,q) \times Sp$ ئب $(2n,\mathbb{R})$ -quotient of $\omega_{m,n}$.
- If π appears as a $O(p, q)$ -quotient of $\omega_{m,n}$, there is a unique representation σ such that $\pi \otimes \sigma$ appears as $O(p,q) \times Sp(2n,\mathbb{R})$ -quotient of $\omega_{m,n}$, and likewise for σ . $\overline{}$
- π and σ are said to correspond under $\omega_{m,n}$.

The general lessons:

 $\sqrt{2}$

- Representations of $O(p, q)$ arising from orbits in $M_{m,n}(\mathbb{R})$ are all part of the spectral analysis of $\omega_{m,n}$.
- Representations of $O(p, q)$ (occurring in $\omega_{m,n}$) should be understood together with, and through representations of Sp $\overline{}$ $(2n,\mathbb{R})$ (occurring in $\omega_{m,n}$).

7 A fundamental issue: occurrence

- What is the <u>domain</u> of the correspondence for $\omega_{m,n}$?
- How does one detect occurrence?

 $\sqrt{2}$

Persistence: (Kudla)

 $\sqrt{2}$

 $\overline{}$

- if $\pi \in \text{Irr}(O(p,q))$ occurs in the duality correspondence with Sp $\overline{}$ $Sp(2n,\mathbb{R})$, then it occurs in the duality correspondence with $Sp(2n+2l,\mathbb{R}),$ for $l\geq 0$.
- $\bullet\; \text{ if } \sigma \in \text{Irr}(Sp)$ $\overline{}$ $(2n,\mathbb{R})$ occurs in the duality correspondence with $O(p, q)$, then it occurs in the duality correspondence with $O(p+l, q+l)$, for $l \geq 0$.

Thus "**Once occur, forever occur**" (along a Witt tower).

Stable range occurrence: (Howe)

- Every representation π of $O(p, q)$ occurs in the duality correspondence with $Sp(2n,\mathbb{R}),$ if $p+q\leq n$.
- Every (genuine) representation σ of Sp $\overline{}$ $(2n,\mathbb{R})$ occurs in the duality correspondence with $O(p, q)$, if $p, q \geq 2n$.

Terminology:

 $\sqrt{2}$

• The dual pair (G, G') is in the stable range, with G the small member.

Notation:

$$
G\leq \frac{G'}{2}
$$

(All representations of G then occur in the dual pair correspondence)

• First occurrence (along ^a Witt tower) thus carries critical information.

 $\sqrt{2}$

- Kudla-Rallis conjectured certain conservation relations on the first occurrence indices: (mid 1990's)
	- Some particular cases: by Kudla-Rallis and others
	- Established in full generality by Sun-Zhu (JAMS 2015).

 $n(\pi) + n(\pi \otimes \det) = p + q, \quad \forall \pi \in \text{Irr}(O(p, q)).$

where

 $\sqrt{2}$

 $\overline{}$

 $\text{min}\{\textit{n} \mid \pi \text{ occurs in the correspondence with } Sp\}$ $\overline{}$ $(2n,\mathbb{R})\}.$

• Early occurrence of one implies late occurrence of the other.

• Examples: (the four characters) $n(1)$ $0, n(1-t)$

 $\sqrt{2}$

$$
- n(1) = 0, n(\det) = p + q;
$$

$$
- n(\mathbf{1}^{+,-}) = p, n(\mathbf{1}^{-,+}) = q.
$$

• Meaning of n(det) =
$$
p + q
$$
:
\n- $\mathcal{S}^*(M_{p+q,n}(\mathbb{R}))^{O(p,q), \det} = 0$, if $n < p + q$.
\n- $\mathcal{S}^*(M_{p+q,n}(\mathbb{R}))^{O(p,q), \det} \neq 0$, if $n = p + q$.

8 The key task

 $\sqrt{2}$

- Describe the correspondence in terms of the Langlands parameters.
	- Lots of works have been done; not yet complete.
- Understand the correspondence, in terms of invariants of representations.
	- Qualitative information: e.g. infinitesimal character, nilpotent invariants

9 Applications to unitary dual

 $\sqrt{2}$

- Preservation of unitarity in the stable range (J.-S. Li): – If $G \leq \frac{G'}{2}$, then all unitary representations of G lift to unitary representations of G′.
- The resulting representations of G' are called singular unitary representations, an important yet still mysterious part of the unitary dual.

• The most mysterious unitary representations are the so-called "unipotent" representations:

 $\sqrt{2}$

- They are "associated" to nilpotent orbits, in the orbit ^philosophy of Kirillov and Kostant.
- Parts of them are related to Langlands philosophy, called special unipotent representations (Arthur, Barbasch-Vogan).
	- Barbasch-Ma-Sun-Zhu (ongoing): construction and classification of special unipotent representations;
	- Heavily using theory of local theta correspondence.

10 Concluding messages

 $\sqrt{2}$

- All representations of the orthogonal group $O(p, q)$ can be found by studying various function spaces on $M_{p+q,n}(\mathbb{R})$.
- Representations of $O(p, q)$ should be studied together with representations of Sp $\overline{}$ $(2n,\mathbb{R}), \,\text{for all}\,\, n.$

Thank you !

 $\sqrt{2}$