

Chen-Bo Zhu

SUDA Lie Group Lecture Series (November 3, 2020)

1 A group should be understood by its actions

- One can tell a lot on the real nature of a group by knowing what possible places it may appear as a group of transformations, namely through its actions.
- Out of all actions, <u>linear actions</u> (by invertible linear transformations) are by far the simplest.
 - They are (called) representations.

• All actions can be converted in some sense to linear actions by the following scheme:

- If $G \curvearrowright X$, let

C(X) = space of functions on X.

(think C(X) as the full collection of observables on X) Then G acts on C(X) by:

$$(g \cdot F)(x) = F(g^{-1} \cdot x), \quad g \in G.$$

- Other vector spaces may also be considered, including * $L^2(X)$ (if there is a suitable measure on X),

* space of sections of a vector bundle on X, and

 $\ast\,$ various cohomological spaces on X .

- To understand a linear operator, one should perform spectral analysis (i.e., eigenspace decomposition).
- To understand a representation, one should complete the same task:
 - analogue of an eigenspace: irreducible representation
 - harmonic analysis: decompose a given representation into irreducible components.

2 The orthogonal group and its natural representation

The (compact and pseudo) orthogonal groups

• O(m): the group of linear transformations on \mathbb{R}^m preserving the distance (squared)

$$x_1^2 + \dots + x_m^2.$$

• More generally O(p,q): the group of linear transformations on \mathbb{R}^m preserving the "pseudo distance"

$$x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_m^2$$
,

where p + q = m.

Remarks.

- \mathbb{R}^m is where the orthogonal group O(m) resides:
 - called the natural representation
- \mathbb{R}^m is more "basic" than O(m):

$$-\dim \mathbb{R}^m = m$$

$$-\dim O(m) = \frac{m(m-1)}{2}$$

• We should strive to construct representations of O(m) from the more basic entity \mathbb{R}^m .

We will focus on the natural action of O(m) on \mathbb{R}^m .

• It divides \mathbb{R}^m into orbits:

$$S^{m-1}(r) = \{ x \in \mathbb{R}^m : x_1^2 + \dots + x_m^2 = r^2 \}, \quad r \ge 0.$$

- Each $S^{m-1}(r)$ is a homogeneous space for O(m), and

$$S^{m-1}(r) \simeq S^{m-1}(r'), \quad r, r' > 0,$$

as O(m) homogeneous spaces.

Take a typical orbit, say the unit sphere $S^{m-1} = S^{m-1}(1)$, and consider the corresponding representation of O(m) on a space of functions on S^{m-1} , say $L^2(S^{m-1})$.

Theory of <u>spherical harmonics</u>:

- $L^2(S^{m-1}) = \sum_{k \in \mathbb{Z}_{\geq 0}} H_k$, where H_k consists of the restrictions to S^{m-1} of <u>harmonic polynomial</u> functions on \mathbb{R}^m of total degree k.
- H_k may also be characterized as the eigenspace of the Laplace-Beltrami operator of eigenvalue -k(m+k-2).
- The spaces H_k are all irreducible under O(m).

Actually, it is better to consider the representation of O(m) on $L^2(\mathbb{R}^m)$:

- The space $L^2(\mathbb{R}^m)$ allows more symmetries (such as dilation, Fourier transform).
- Theory of spherical harmonics is a part of the spectral decomposition of $L^2(\mathbb{R}^m)$ as a representation of O(m).

More precisely, we have the isotypic decomposition

$$L^{2}(\mathbb{R}^{m}) = \sum_{\lambda \in \operatorname{Irr}(O(m))} L^{2}(\mathbb{R}^{m})_{\lambda} = \sum_{\lambda \in \operatorname{Irr}(O(m))} L^{2}(\mathbb{R}^{m}; \lambda') \otimes V_{\lambda}.$$

- $L^2(\mathbb{R}^m; \lambda')$ is the space of multiplicities of λ , which carries additional symmetries.
- $L^2(\mathbb{R}^m; \lambda') \neq 0$ if and only if $\lambda \simeq H_k$, for some $k \in \mathbb{Z}_{\geq 0}$.

3 Going beyond the natural representation

- An obvious way to go beyond the natural representation of O(m) on R^m is to consider the <u>direct sum</u> of (say) n copies of R^m, which is M_{m,n}(R), the space of m × n real matrices.
- Thus O(m) acts on $M_{m,n}(\mathbb{R})$, now by matrix multiplication on the left.
- As in $L^2(\mathbb{R}^m)$, we now consider $L^2(M_{m,n}(\mathbb{R}))$.

- Now in $M_{m,n}(\mathbb{R})$, there is more "space" for O(m) to move around, and hence $L^2(M_{m,n}(\mathbb{R}))$ can "accommodate" more representations of O(m).
- In fact all irreducible representations of O(m) will appear in $L^2(M_{m,n}(\mathbb{R}))$ as soon as $n \ge m$.

4 From compact orthogonal groups to pseudo orthogonal groups

• Consider the pseudo orthogonal group O(p,q) and its natural action on \mathbb{R}^m , where m = p + q. The inner product is

$$(x,x) = x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_m^2$$

- The orbits are of the form (x, x) = t: four different types.
 - * roughly depending on the sign of t;
 - * two orbits for t = 0 (cone minus the origin, and the origin).
- This leads to a more complicated structure of $L^2(\mathbb{R}^m)$ as a representation of O(p,q).

- Representations of O(p,q) on these orbits are all part of spectral analysis of $L^2(\mathbb{R}^m)$.
- Similarly for the O(p,q) representation on $L^2(M_{m,n}(\mathbb{R}))$.
- Due to the non-compact nature of O(p,q), many issues arise:
 - finite dimensional vs <u>infinite dimensional</u>;
 - unitary versus non-unitary.
- We shall consider all (smooth) representations.

5 A basic idea in spectral analysis

- An important way to decompose a representation is to find operators which <u>commute</u> with the group action.
 - the commuting or intertwining algebra.
- A very good scenario is when the commuting algebra comes from a group action.

- An even better scenario is when they are mutual centralizers under a larger group action.
- This is indeed the case for the O(p,q) representation $L^2(M_{m,n}(\mathbb{R}))$: there is a commuting action of the metaplectic group $\widetilde{Sp}(2n,\mathbb{R})$ on $L^2(M_{m,n}(\mathbb{R}))$, which are the

"hidden" symmetries

Example: extra symmetry by an $\widetilde{SL}(2,\mathbb{R})$ action on $L^2(\mathbb{R}^m)$.

- The representation is called an <u>oscillator</u> representation, denoted by ω .
- We describe the representation ω by generators of $SL(2,\mathbb{R})$:

$$m_a = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}, \ n_b = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, \ \sigma = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

 $(\omega(m_a)f)(x) = |a|^{\frac{p+q}{2}} f(ax),$ (normalized dilation) $(\omega(n_b)f)(x) = e^{\frac{ib}{2}(x,x)} f(x),$ (multiplication by an O(p,q)-invariant function) $(\omega(\sigma)f)(x) = (\frac{1}{2\pi})^{\frac{p+q}{2}} \int_{R^m} e^{-i(x,y)} f(y) dy.$ (Fourier transform)

6 An remarkable phenomenon: Howe duality

- Consider the space $\mathcal{S}(M_{m,n}(\mathbb{R}))$ of Schwartz class functions on $M_{m,n}(\mathbb{R})$.
- This is a representation of $O(p,q) \times \widetilde{Sp}(2n,\mathbb{R})$.
 - O(p,q) acts naturally.
 - $-\widetilde{Sp}(2n,\mathbb{R})$ acts by "hidden symmetries".
- Denote this representation by $\omega_{m,n}$: the smooth oscillator representation.

- We consider quotient representations of $\omega_{m,n}$.
- Questions:
 - What representation π of O(p,q) may appear as a quotient of $\omega_{m,n}$?
 - What representation σ of $\widetilde{Sp}(2n, \mathbb{R})$ may appear as a quotient of $\omega_{m,n}$?

Dual pair correspondence:

- Given $\pi \in \operatorname{Irr}(O(p,q))$ and $\sigma \in \operatorname{Irr}(\widetilde{Sp}(2n,\mathbb{R}))$, there is at most one way for $\pi \otimes \sigma$ to appear as $O(p,q) \times \widetilde{Sp}(2n,\mathbb{R})$ -quotient of $\omega_{m,n}$.
- If π appears as a O(p,q)-quotient of $\omega_{m,n}$, there is a <u>unique</u> representation σ such that $\pi \otimes \sigma$ appears as $O(p,q) \times \widetilde{Sp}(2n,\mathbb{R})$ -quotient of $\omega_{m,n}$, and likewise for σ .
- π and σ are said to correspond under $\omega_{m,n}$.

The general lessons:

- Representations of O(p,q) arising from orbits in $M_{m,n}(\mathbb{R})$ are all part of the spectral analysis of $\omega_{m,n}$.
- Representations of O(p,q) (occurring in $\omega_{m,n}$) should be understood together with, and through representations of $\widetilde{Sp}(2n,\mathbb{R})$ (occurring in $\omega_{m,n}$).

7 A fundamental issue: occurrence

- What is the <u>domain</u> of the correspondence for $\omega_{m,n}$?
- How does one detect occurrence?

Persistence: (Kudla)

- if $\pi \in \operatorname{Irr}(O(p,q))$ occurs in the duality correspondence with $\widetilde{Sp}(2n,\mathbb{R})$, then it occurs in the duality correspondence with $\widetilde{Sp}(2n+2l,\mathbb{R})$, for $l \geq 0$.
- if $\sigma \in \operatorname{Irr}(\widetilde{Sp}(2n,\mathbb{R}))$ occurs in the duality correspondence with O(p,q), then it occurs in the duality correspondence with O(p+l,q+l), for $l \geq 0$.

Thus "Once occur, forever occur" (along a Witt tower).

Stable range occurrence: (Howe)

- Every representation π of O(p,q) occurs in the duality correspondence with $\widetilde{Sp}(2n,\mathbb{R})$, if $p+q \leq n$.
- Every (genuine) representation σ of $\widetilde{Sp}(2n, \mathbb{R})$ occurs in the duality correspondence with O(p, q), if $p, q \ge 2n$.

Terminology:

• The dual pair (G, G') is in the <u>stable range</u>, with G the small member.

Notation:

$$G \le \frac{G'}{2}$$

(All representations of G then occur in the dual pair correspondence)

- First occurrence (along a Witt tower) thus carries critical information.
- Kudla-Rallis conjectured certain <u>conservation relations</u> on the first occurrence indices: (mid 1990's)
 - Some particular cases: by Kudla-Rallis and others
 - Established in full generality by Sun-Zhu (JAMS 2015).

 $n(\pi) + n(\pi \otimes \det) = p + q, \quad \forall \pi \in Irr(O(p,q)).$

where

 $n(\pi) := \min\{n \mid \pi \text{ occurs in the correspondence with } \widetilde{Sp}(2n, \mathbb{R})\}.$

• Early occurrence of one implies late occurrence of the other.

• Examples: (the four characters)

$$- n(1) = 0, n(det) = p + q;$$

$$- n(\mathbf{1}^{+,-}) = p, n(\mathbf{1}^{-,+}) = q.$$

• Meaning of
$$n(\det) = p + q$$
:
 $- \mathcal{S}^{\star}(M_{p+q,n}(\mathbb{R}))^{O(p,q), \det} = 0, \text{ if } n < p+q.$
 $- \mathcal{S}^{\star}(M_{p+q,n}(\mathbb{R}))^{O(p,q), \det} \neq 0, \text{ if } n = p+q.$

8 The key task

- Describe the correspondence in terms of the <u>Langlands</u> parameters.
 - Lots of works have been done; not yet complete.
- Understand the correspondence, in terms of <u>invariants</u> of representations.
 - Qualitative information: e.g. infinitesimal character, nilpotent invariants

9 Applications to unitary dual

- Preservation of unitarity in the stable range (J.-S. Li):
 If G ≤ G'/2, then all unitary representations of G lift to unitary representations of G'.
- The resulting representations of G' are called <u>singular unitary</u> representations, an important yet still mysterious part of the unitary dual.

- The most mysterious unitary representations are the so-called "unipotent" representations:
 - They are "associated" to nilpotent orbits, in the orbit philosophy of Kirillov and Kostant.
- Parts of them are related to <u>Langlands philosophy</u>, called special unipotent representations (Arthur, Barbasch-Vogan).
 - Barbasch-Ma-Sun-Zhu (ongoing): construction and classification of special unipotent representations;
 - Heavily using theory of local theta correspondence.

10 Concluding messages

- All representations of the orthogonal group O(p,q) can be found by studying various function spaces on $M_{p+q,n}(\mathbb{R})$.
- Representations of O(p,q) should be studied together with representations of $\widetilde{Sp}(2n,\mathbb{R})$, for all n.

Thank you !