金融工程研究中心学术报告:A Problem of Finite-Horizon Optimal Switching and Stochastic Control for Utility Maximization

报告人:杨舟  教授  华南师范大学

报告时间:2024.12.9(周一) 10:00-11:00

报告地点:金融工程研究中心105

报告摘要:

A Problem of Finite-Horizon Optimal Switching and Stochastic Control for Utility Maximization

In this paper, we undertake an investigation into the utility maximization problem faced by an economic agent who possesses the option to switch jobs, within a scenario featuring the presence of a mandatory retirement date. The agent needs to consider not only optimal consumption and investment but also the decision regarding optimal job-switching. Therefore, the utility maximization encompasses features of both optimal switching and stochastic control within a finite horizon. To address this challenge, we employ a dual-martingale approach to derive the dual problem defined as a finite-horizon pure optimal switching problem. By applying a theory of the double obstacle problem with non-standard arguments, we examine the analytical properties of the system of parabolic variational inequalities arising from the optimal switching problem, including those of its two free boundaries. Based on these analytical properties, we establish a duality theorem and characterize the optimal job-switching strategy in terms of time-varying wealth boundaries. Furthermore, we derive integral equation representations satisfied by the optimal strategies and provide numerical results based on these representations.

 

个人简介

杨舟,华南师范大学数学科学学院,教授,博士导师。主要从事金融数学和随机控制方面的研究,主要研究方向为:美式衍生产品定价、最优投资组合、最优停时问题、金融中的自由边界问题。部分研究成果发表于MATH OPER RESSIAM J CONTROL OPTIMSIAM J MATH ANALJ DIFFER EQUATIONS等期刊。曾主持五项国家基金和多项省部级基金。

 

(18新利体育 金融工程研究中心)
苏大概况 教育教学
18luck.app 18luck mx
组织机构 合作交流
招生就业 公共服务
版权所有©18新利体育

地址:江苏省苏州市姑苏区十梓街1号

苏ICP备10229414号-1
苏公网安备 32050802010530号
推荐使用IE8.0以上浏览器,1440*900以上分辨率访问本网站