我院师生在信息传播预测方面的最新成果被数据挖掘顶级会议ACM KDD2024录用
时间: 2024-05-28 发布者: 周经亚 文章来源: 计算机科学与技术学院 审核人: 黄河、李恩秀 浏览次数: 30

近日,知识发现与数据挖掘国际会议ACM SIGKDD Conference on Knowledge Discovery and Data Mining,KDD2024发布论文接收结果,我院周经亚教授团队的论文“A Deep Prediction Framework for Multi-Source Information via Heterogeneous GNN”被大会Research Track录用。ACM KDD是数据挖掘领域顶级会议,也是中国计算机学会(CCF)推荐的A类国际学术会议,在数据挖掘领域享有极高的声誉,对研究成果的创新性、技术领先性、系统完备性以及写作水平有着极其苛刻的要求。KDD大会至今已成功举办29届,每次都吸引大量来自世界各地的学术界、工业界专业人士参与,第30届会议将于今年8月25-29日在西班牙巴塞罗那举办,本次大会Research Track共收到2046篇投稿,录用率约为20%。本次录用论文的第一作者是我院2020级硕士研究生吴臻同学(现已毕业),通讯作者为周经亚教授,合作单位包括东南大学和美国佐治亚理工学院。

信息传播预测一直是社交网络研究中的关键性、基础性问题,其应用前景相当广泛,例如,可用于实现舆情监测、在线网络营销、社交推荐以及谣言监测等。当前研究主要关注对单个信息传播级联的预测,对级联关注用户的采样普遍采用逐跳方式,存在大量冗余,且缺乏通用性和泛化能力。为此,本文提出一种面向多源信息传播的通用模块化预测框架,在该框架下设计实现柔性时间划分与动态带权采样进一步优化模型,通过在三个真实数据集上的大量实验表明,本文所提框架在多个预测性能指标上的表现均优于当前最先进方法,并且具有很好的通用性和可解释性。在双盲评审过程中,多位评审专家对本文的写作水平(Presentation Quality: 3)给予满分评价,其中一位评审专家对本文的技术先进性(Technical Quality: 7)和创新性(Novelty: 6,满分7分)分别给出满分和接近满分的评价。论文及评审信息将于近期在Openreview公开。

该项研究工作得到了国家自然科学基金面上项目、江苏省高等学校自然18新利备用网站 重大项目以及江苏省优势学科等项目的资助,论文信息如下
Zhen Wu, Jingya Zhou, Jinghui Zhang, Ling Liu, Chizhou Huang. A Deep Prediction Framework for Multi-Source Information via Heterogeneous GNN, 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), August 25-29, 2024, Barcelona, Spain.