《物理化学(二)(下)》教学大纲

课程代码: NANA2065

课程名称: 物理化学(二)(下)

英文名称: Physical Chemistry

课程性质:大类基础

学分/学时: 4/72

考核方式: 闭卷笔试

开课学期:第5学期

适用专业: 纳米材料科学与工程, 纳米医学

先修课程: 物理化学(二)(上)

普通物理 无机化学

English skill for scientists

后续课程: 毕业设计

开课单位: 纳米科学技术学院

课程负责人: Manuel E. Brito

大纲执笔人: Manuel E. Brito

大纲审核人: 董彬

选用教材: Atkins' Physical Chemistry, 9th Edition (2010), Peter Atkins and Julio de

Paula, Oxford University Press.

《物理化学》(第五版) 傅献彩 , 高等教育出版社。

一、课程目标

通过本课程的教学, 学生将具备以下能力

- 1. Use basic knowledge in physicalchemistry and equilibrium thermodynamics to conceptualize complex chemical equilibrium problems in the field of nanotechnology. (支撑毕业要求指标点 1-1)
- 2. Use basic knowledge in physicalchemistry and equilibrium thermodynamics to analyze and quantitatively solve complex problems in the field of nanotechnology. (支撑毕业要求指标点 1-2)
- 3. Being able to apply the materials science approach to conduct comprehensive analysis of complex problems in the field of nanotechnology. (支撑毕业要求指标点 2-1)

二、教学内容

- 1. Molecules in motion
- 2. The rates of chemical reactions
- 3. Reaction dynamics
- 4. Catalysis
- 5. Topics on Applications.

三、课程成绩

1. 考核方式

课程目标	考核内容	考核方式
Use basic knowledge of physical-chemistry	分子运动性质的概念、影响物质	每次测试中以选择题
and, specifically, chemical kinetics and	输运特征物理量的分子特性,反	形式进行
chemical dynamics to conceptualize complex	应速率的定义和表示方法	

chemical reaction problems in the field of nanotechnology. (支撑毕业要求指标点 1-1)		
Use basic knowledge of physical-chemistry and, specifically, chemical kinetics and chemical dynamics tools to analyze and quantitatively solve complex chemical reaction problems in the field of	简单物质输运参数、反应速率常 数、活化能的计算	每次测试中以选择题 形式进行
nanotechnology. (支撑毕业要求指标点 1-2)		
Enabling students to apply the physical chemistry approach and chemical kinetics and chemical dynamic tools to conduct comprehensive analysis of complex problems in the field of nanotechnology. (支撑毕业要求指标点 2-1)	给定化学反应的反应机理推测、 速率常数的推导	每次测试中作为重点 以选择或简答题目进 行

2. 成绩评定方法

	课堂提问和讨论权重	期中考试权重	期末考试权重
课程目标1	40%	35%	10%
课程目标 2	30%	35%	20%
课程目标 3	30%	30%	70%

3. 课程目标(支撑毕业要求指标点)达成度评价方法

课程目标 n 达成度=(课堂提问和讨论权重*平时权重*10%+期中平均分*期中权重*30%+期末平均分*期末权重*60%)/(100*课堂提问和讨论权重*10%+100*期中权重*30%+100*期末权重*60%)

4. 评分标准

90-100	75-89	60-74	0-59
(优秀)	(良好)	(及格)	(不及格)
能够熟练从微观 视角和宏观视角 两方面分析物质 的运动和化学反 应随时间的变化 规律。	能够认识到造成 不同化学物质特 征物理量的深层 原因,熟悉影响 反应速率的因 素。	能够理解微观视 角和宏观视角的 关联,熟悉分子 特征参数表示宏 观物理量的方 法。	将微观和宏观视 角二者孤立,不 能看到两者在分 析问题时的作 用。
能够根据分子性 质预测其特征物 理量的变化规律,能够运动动力学基本理论设计方法判断实际	能够准确快速的 判断出影响物质 输运快慢、化学 反应变化速率的 因素,并能够正 确定量计算速率	能够通过分子特 征参数计算一些 宏观运动性质的 物理量,能够计 算简单化学反应 的动力学参数。	无法根据给定公 式计算出正确的 物理参数,不能 正确判定化学反 应中物质量变与 时间的关系。
	能够熟练从微观 视角和宏观视角 两方面分析物质 的运动和化学化 变能够制力。 能够测其特化的变 ,能够一种,是有一种,是有一种。	能够熟练从微观 视角和宏观视角 两方面分析物质 的运动和化学反 应随时间的变化 规律。 能够根据分子性 质预测其特征物 理量的变化规 有,能够运动动 力学基本理论设 计方法判断实际	能够熟练从微观 能够认识到造成 形够理解微观视 和和宏观视角 不同化学物质特 角和宏观视角的 天联,熟悉分子 原因,熟悉影响 反应速率的因 反应速率的因素。 常够根据分子性 质预测其特征物 理量的变化规 作,能够运动动力学基本理论设 计方法判断实际 化等 发现运动性质的 物理量,能够计算简单化学反应 的动力学参数。

reaction problems in the field of nanotechnology.	学参数。			
Enabling students to apply the physical chemistry approach and chemical kinetics and chemical dynamic tools to conduct comprehensive analysis of complex problems in the field of nanotechnology.	能够应用物理化 学方法和化学动 力学及化学动力 学工具,对纳米 技术领域的复杂 问题进行综合分 析。	能够应用平衡热 力学来发现并创 新地利用纳米技 术领域复杂问题 中发现的新的关 键因素	能够应用化学动 力学及工具来确 定在纳米技术领 域的复杂问题中 发现的经典的关 键因素。	缺乏对物理化学 及化学动力学的 基本认识