机电工程学院个人科研情况简表
机电工程学院
姓名:凌明祥 | 性别:男 | 出生年月:1986-10 | ||
学历:博士研究生 学位:工学博士 | 职称/导师类别:教授/硕导 | |||
毕业学校:西安交通大学 | 学科专业:机械电子工程 | |||
主要研究 方向 | 柔顺机构学;压电精微驱动;微纳操作机器人 | |||
更多信息请参考个人主页:http://web.suda.edu.cn/lmx | ||||
科研工作简历 | 西安交通大学本科(2005-2009);哈尔滨工业大学硕士(2009-2011);西安交通大学博士(定向委培,2015-2019);中国工程物理研究院总体工程研究所工程师和副研究员(2011-2022);美国杨百翰大学柔顺机构课题组访问学者(合作导师:Larry.L. Howell,2017-2018);华南理工大学博士后(合作导师:张宪民,2020-2022);现任18新利体育 机器人与微系统中心教授(2023.01-今)。 重点开展基于柔性铰链机构的压电精微驱动与微纳操作机器人应用基础、功能器件及系统集成研究,包括柔顺机构线性与非线性动力学分析理论、宏-微-纳跨尺度精密驱动创新设计、多微力传感器以及微纳操作与装配机器人,并探索其在精密工程、微纳制造以及生物医学等高端装备和交叉科学中的应用。 | |||
学术成果 | 一、发表论文: 发表学术论文49篇(主要围绕MMT,IEEE/ASME T.Mech.,MSSP,ASME-JMD,PE和ASME-JMR等机构学/机械电子工程专业期刊发表);授权发明专利10余项。(*通讯作者) 2024年: (49) M.X. Ling, Yuan L, Zhang X M*. Geometrically nonlinear analysis of compliant mechanisms using a dynamic beam constraint model (DBCM)[J]. Mechanism and Machine Theory, 2024, 191: 105489. (48) M.X. Ling*, Zhao L, Wu S, et al. Nonlinear Evaluation of a Large-Stroke Coiled L-Shape Compliant Guiding Mechanism With Constant Stiffness[J]. ASME-Journal of Mechanical Design, 2024, 146(6). (47) Zhu J(学生), M.X. Ling*, Li L, et al. Linear and nonlinear analytical equations for fast design of three types of triangular-amplified compliant mechanisms[J]. Precision Engineering, 2024, 86: 342-350. (46) Wu S L, M.X. Ling*, Wang Y, et al. Electro-mechanical transfer matrix modeling of piezoelectric actuators and application for elliptical flexure amplifiers[J]. Precision Engineering, 2024, 85: 279-290. (45) M.X. Ling, L. Yuan, T.J. Zeng, X.M. Zhang*. Enabling transfer matrix method to model serial-parallel compliant mechanisms including curved flexure beams[J]. International Journal of Mechanical System Dynamics, 2024, In Press. (44) L. Yuan, M.X. Ling, J.H. Lai, et al. Graphic transfer matrix method for kinetostatic and dynamic analyses of compliant mechanisms[J]. ASME-Journal of Mechanisms and Robotics, 2024, 16(2): 021009. 2023年: (43) M.X. Ling*, L. Yuan, H. Zhou, et al. Modified transfer matrix method for vibration analysis of beam structures including branches and rigid bodies[J]. Mechanical Systems and Signal Processing, 2023, 187: 109858. (42) M.X. Ling, L. Yuan, X.M. Zhang*. Static and dynamic compliance analyses of curved-axis flexure hinges: A discrete beam transfer matrix[J].ASME-Journal of Mechanical Design, 2023, 145(6): 064501. (41) M.X. Ling, Wu S L, Luo Z, et al. An electromechanical dynamic stiffness matrix of piezoelectric stacks for systematic design of micro/nano motion actuators[J]. Smart Materials and Structures, 2023, 32(11): 115012. (40) M.X. Ling, L. Yuan, X.M. Zhang*. Bionic design of a curvature-adjustable flexure hinge inspired by red blood cells[J]. Precision Engineering, 2023, 81: 124-134. (39) M.X. Ling, L. Yuan, X.M. Zhang*. Compliance and precision modeling of general notch flexure hinges using a discrete-beam transfer matrix[J]. Precision Engineering, 2023, 83. (38) M.X. Ling, H. Zhou, L.G. Chen*. Dynamic stiffness matrix with Timoshenko beam theory and linear frequency solution for use in compliant mechanisms[J]. ASME-Journal of Mechanisms and Robotics, 2023, 15(6): 061002. (37) Wei H, Tian Y, Zhao Y, M.X. Ling, et al. Two-axis flexure hinges with variable elliptical transverse cross-sections[J]. Mechanism and Machine Theory, 2023, 181: 105183. (36) M.X. Ling*, J. Wang. Nonlinear coupled dynamic effects in flexure-amplified piezoelectric valve with an analytical transfer function[J]. PIME Part C: Journal of Mechanical Engineering Science, 2023: 09544062221121989. (35) Lai, J., Yu, L., Yuan, L., Liang, J., M.X. Ling*, Wang, R. & Zhang, X.M*. An integrated modeling method for piezo-actuated compliant mechanisms.Sensors and Actuators A: Physical, 2023, 364, 114770. (34) Zhou H, M.X. Ling*, Yin Y*, et al. Exact vibration solution for three versions of Timoshenko beam theory: A unified dynamic stiffness matrix method[J]. Journal of Vibration and Control, 2023: 10775463231215408. (33) Zhang C, Tao M*, M.X. Ling*. Numerical investigation of highly viscous droplet generation based on level set method[J]. Physica Scripta, 2023, 98(11): 115007. 2022年: (32) M.X. Ling*, X. He, M.X Wu, et al. Dynamic Design of a Novel High-Speed Piezoelectric Flow Control Valve Based on Compliant Mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27: 1-9. (31) M.X. Ling, D.Z. Song,X.M. Zhang*, et al. Analysis and design of spatial compliant mechanisms using a 3-D dynamic stiffness model [J]. Mechanism and Machine Theory, 2022, 104581. (30) M.X. Ling,X.M. Zhang* and J.Y. Cao. Extended dynamic stiffness model for analyzing flexure-hinge mechanisms with lumped compliance [J].ASME-Journal of Mechanical Design, 2022,144(1), 013304 (29) H.Y. Li, F. Guo, Y. Wang, Z. Wang, C. Li, M.X. Ling* and G.B. Hao*. Design and modeling of a compact compliant stroke amplification mechanism with completely distributed compliance for groundmounted actuators [J]. Mechanism and Machine Theory, 2022, 167, 104566. (28) M.X. Ling*, C. Zhang, L.G. Chen*. Optimized design of a compact multi-stage displacement amplification mechanism with enhanced efficiency [J]. Precision Engineering, 2022, 77: 77-89. (27) L.S. Deng,M.X. Ling*. Design and integrated stroke sensing of a high-response piezoelectric directdrivevalveenhanced by push-pull compliant mechanisms [J]. Review of Scientific Instruments, 2022, 93(3): 035008. (26) M.X. Ling, L. Yuan, Z. Luo, et al. Enhancing Dynamic Bandwidth of Amplified Piezoelectric Actuators by a Hybrid Lever and Bridge-Type Compliant Mechanism [J]. Actuators, 2022, 11(5): 134. (25) S.Gui, S. Zhang, B. Fu*, and M.X. Ling. Fluid-dynamic analysis and multi-objective design optimization of piezoelectric servo valves [J]. Flow Measurement and Instrumentation, 2022, 102157. (24) 黄涛, 罗治洪, 陶桂宝*, 凌明祥*. 压电定位平台Hammerstein建模与反馈线性化控制[J]. 光学精密工程, 2022, 30(14): 1716-1724. 2021年: (23) M.X. Ling, andX.M. Zhang*. Coupled dynamic modeling of piezo-actuated compliant mechanisms subjected to external loads[J]. Mechanism and Machine Theory, 2021, 160, 104283. (22) M.X. Ling*, J.L. Wang, M.X. Wu, et al. Design and modeling of an improved bridge-type compliant mechanism with its application for hydraulic piezo-valves[J]. Sensors and Actuators A: Physical, 2021, 324: 112687. (21) C. Zhang, M.X. Ling*, M. Tao*. A block matrix based precise integration algorithm for solving non-homogeneous dynamic response [J].ASME-Journal of Computational and Nonlinear Dynamics, 2021, 17(1). 2020年以前: (20) M.X. Ling, L.L. Howell, J.Y. Cao, G.M.Chen. Kinetostatic and dynamic modeling of flexure-based compliant mechanisms: A survey[J]. ASME-Applied Mechanics Reviews, 2020, 72(3), 030802. (19) M.X. Ling*. A general two-port dynamic stiffness model and static/dynamic comparison for three bridge-type flexure displacement amplifiers[J]. Mechanical Systems and Signal Processing, 2019, 119: 486-500. (18) M.X. Ling, J.Y. Cao*, Z. Jiang, M.H. Zeng, Q.S. Li. Optimal design of a piezo-actuated 2-DOF millimeter-range monolithic flexure mechanism with a pseudo-static model[J]. Mechanical Systems and Signal Processing, 2019, 115: 120-131. (17) M.X. Ling, J.Y. Cao*, N. Pehrson. Kinetostatic and dynamic analyses of planar compliant mechanisms with a two-port dynamic stiffness model[J]. Precision Engineering, 2019, 57: 149-161. (16) M.X. Ling, J.Y. Cao, Q.S. Li. Design, pseudo-static model and PVDF-based motion sensing of a precision XYZ flexure manipulator[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(6): 2837-2848. (15) M.X. Ling, J.Y. Cao, L.L. Howell*, M.H. Zeng. Kinetostatic modeling of complex compliant mechanisms with serial-parallel substructures: A semi-analytical matrix displacement method[J]. Mechanism and Machine Theory, 2018, 125: 169-184. (14) S.L. Chen, M.X. Ling*, X. Zhang. Design and experiment of a millimeter-range and high-frequency compliant mechanism with two output ports[J]. Mechanism and Machine Theory, 2018, 126: 201-209. (13) M.X. Ling*, Q.S. Li. Dynamic stiffness matrix for free vibration analysis of flexure hinges based on non-uniform Timoshenko beam[J]. Journal of Sound and Vibration, 2018, 437: 40-52. (12) M.X. Ling, J.Y. Cao*, Z. Jiang, J. Lin. A semi-analytical modeling method for the static and dynamic analysis of complex compliant mechanism[J]. Precision Engineering, 2018, 52: 64-72. (11) M.X. Ling, L.L. Howell*, J.Y. Cao. A pseudo-static model for dynamic analysis on frequency domain of distributed compliant mechanisms[J]. ASME-Journal of Mechanisms and Robotics, 2018, 10 (5), 051011. (10) M.X. Ling, J.Y. Cao*, Z. Jiang, Q.S. Li. Development of a multistage compliant mechanism with new boundary constraint[J]. Review of Scientific Instruments, 2018, 89 (1), 015009. (09) M.X. Ling, J.Y. Cao*, Z. Jiang, J. Lin. Modular kinematics and statics modeling for precision positioning stage[J]. Mechanism and Machine Theory, 2017, 107: 274-282. (08) M.X. Ling, J.Y. Cao*, M.H. Zeng, J. Lin, D.J. Inman. Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms[J]. Smart Materials and Structures, 2016, 25 (7): 075022 (07) M.X. Ling, J.Y. Cao*. Theoretical modeling of attenuated displacement amplification for multistage compliant mechanism and its application[J]. Sensors and Actuators A: Physical, 2016, 249: 15-22. (06) J.Y. Cao*, M.X. Ling, D.J. Inman, J. Lin. Generalized constitutive equations for piezo-actuated compliant mechanism[J]. Smart Materials and Structures, 2016, 25 (9), 095005. (05) 凌明祥, 李明海, 杨新, 黎启胜, 王珏. 精密离心机静态半径测量方法与应用[J]. 仪器仪表学报, 2014, 35(5): 1072-1078. (04) 凌明祥, 李会敏, 李明海, 黎启胜. 含相关性的测量不确定度拟蒙特卡洛评定方法[J]. 仪器仪表学报, 2014, 35(6): 1385-1393. (03) 凌明祥, 朱长春. 液压振动台非线性摩擦力测量与参数辨识[J]. 振动、测试与诊断, 2017, 37(4):687-691. (02) 凌明祥, 刘谦, 曹军义,李思忠. 压电位移放大机构的力学解析模型及有限元分析[J]. 光学精密工程, 2016, 24(4):812-818. (01) 凌明祥,李会敏, 黎启胜,张荣,李明海. 10-6量级精密离心机输出加速度测量模型及不确定度评定[J]. 光学精密工程, 2015, 23(8):2306-2317. 二、荣誉获奖: 2023年:中国工程物理研究院总体工程研究所创新实践一等奖(排名8) 2022年:IFToMM CCMMS ‘QiXian Best Paper Award’(第一作者) 2021年:西安交通大学优秀博士学位论文获得者 2021年:首届川渝科学技术大会优秀论文三等奖(第一作者) 2021年:四川省振动工程及应用学术会议优秀论文奖(第一作者) 2018年:中国工程物理研究院机械工程学术年会优秀论文奖(第一作者) 2017年:国家军队科技进步一等奖(排名15) 2015年:四川省优秀共青团员荣誉称号 2014年:中国工程物理研究院总体工程研究所第三届优秀青年科技奖获得者 2008年:陕西省第七届大学生高等数学竞赛一等奖(排名1) 2006年:陕西省第六届大学生高等数学竞赛一等奖(排名1) 三、学术兼职: (8) Chinese Journal of Mechanical Engineering青年编委(2024.1-2025.12), 中科院二区 (7) Micromachine期刊客座编辑(Main-Guest Editors). (6) Sensors期刊客座编辑(Co-Guest Editors). (5) 四川省振动工程学会理事(2019-2022). (4) 四川省青年科协理事(2019-2022). (3) 中国工程物理研究院动力学与控制第八届学科委员会成员(2020-2022). (2) 2022 SPAWDA分会场共同主持. (1) 2019MeTrApp分会场共同主席. | |||
科研项目 | (8) 姑苏创新创业青年领军人才项目,主持,2023.07-2026.06(On going) (7) 国家自然科学基金面上项目,主持,2021.01-2024.12(On going) (6) 国家自然科学基金青年项目,主持,2018.01-2020.12(Completed) (5) 中国工程物理研究院院长基金,主持,2020.01-2022.12(Completed) (4) 中国工程物理研究院创新发展基金,主持,2020.01-2022.12(Completed) (3) 四川省自然科学基金(应用基础研究项目),主持,2020.01-2021.12(Completed) (2) 中国博士后基金面上项目二等资助,主持,2020.06-2021.06(Completed) (1) 中国工程物理研究院创新发展基金,主持,2013.01-2014.12(Completed) | |||
研究生 需 求 | 欢迎对数学、力学、机械创新设计、微纳米机器人感兴趣或者愿意专注工程研制的本科生及研究生联系我!课题组结合个人兴趣和发展意向制定研究课题: 创新设计:压电执行器;宏-微-纳跨尺度驱动;多维力传感器(偏重机械创新和前沿探索) 工程研制:微操作、微装配机器人系统研制(偏重控制和系统集成创新) *导师全程、过程化指导,与学生共同深入一线开展研究、讨论和相互启发; *可行靠谱甚至优秀的硕博士课题方向,不安排做硕博士课题无关或零乱项目; *基本可保证每位硕士生三年期间发表至少2篇第一作者的专业领域高水平文章。 对研究生的基本要求: *对科研(指学术研究或工程技术)不感兴趣,只为拿个硕士学位证书者勿扰; *坐不住冷板凳,想通过抓热点快速“水”点文章以便顺利出国等投机者勿扰; *不希望:做事应付、不追求高质量、差不多就好、何必那么认真和专注者! | |||
联系方式 | 邮箱:ling_mx@163.com手机:15280913840 文章被引情况及其他信息,请参考学术谷歌学术主页或者学校个人主页: https://xs2.studiodahu.com/citations?user=Qfa4R80AAAAJ&hl=zh-CN&oi=ao |
2024年2月27日