张伟


  姓名:张伟
  职称:教授、博士生导师

  部门:材料学院
  联系方式:
Tel: 86-512-65884243 (o)

Email: weizhang@suda.edu.cn


 


学历及学术经历张伟,男,博士,197911月生。2001年本科毕业于安徽大学化学化工学院;2006年在18新利体育 化学化工学院获有机化学专业博士学位,同年被18新利体育 特聘为副教授留校工作。2009年正式被聘为副教授和硕士生导师,2013年破格晋升为教授,2014年晋升博士生导师。20057月至20058月赴新加坡国立大学E. T Kang教授和K. G. Neoh教授课题组作学术访问。20094-20113月日本奈良先端科学技术大学院大学博士后(JSPS奖学金资助),合作导师藤木道也(Michiya Fujiki)教授。201511-20162月,北海道大学访问教授,合作者中野環(Tamaki Nakano)教授。主要开设《高分子化学》以及《Materials Chemistry》(全英文教学)等课程。目前,在J. Am. Chem. Soc.Adv. Funct. MaterMacromoleculesPolym. Chem等杂志发表学术论文150余篇。申请专利20余项,其中12项已授权。

  

研究领域超分子聚合物与组装;超分子手性自组装;多功能刺激响应材料;共轭高分子。

  

获奖情况:

1.  教育部自然科学二等奖,排六,2010

2.  江苏省自然科学进步二等奖,排六,20102012

3.  苏州市科技进步一等奖,排六,2009

4.  国际高分子论坛最佳墙报奖,2007

5.  江苏省优秀本科设计三等奖和18新利体育 优秀本科设计一等奖(指导教师),2008

6.  苏州市自然科学优秀学术论文三等奖,20082010

7.  校青年教师教学竞赛三等奖,2012


主持项目:

1. 国家自然科学基金面上项目:手性溶剂诱导非手性组装基元的手性超分子组装及固定(21971180),80万元,2020.1−2023.12,主持;

2. 国家自然科学基金面上项目:芳香偶氮聚合物合成新方法研究(21574089),80.9万元,2016.1−2019.12,主持;

3. 国家自然科学基金面上项目:结合圆偏振光辐照和聚合物后分散技术制备光响应型聚合物手性纳米粒子(21374072),83万元,2014.1−2017.12,主持;

4. 国家自然科学青年基金项目:基于非手性偶氮苯主链共轭共聚物超分子手性光学开关的研究(21104052),25万元,2012.1−2014.12,主持;

5. 江苏省高等学校18新利备用网站 重大项目:非手性聚合物体系中超分子手性的构建及固定(19KJA360006),30万元,2019.9-2022.8,主持;

6. 苏州市科技发展计划(应用基础研究(工业))项目:酞菁超分子纳米导线的光控有序组装(SYG201111),10万元,2011.7-2013.6,主持;

7. 科技部重大国际合作计划项目:基于光电应用的纳米材料制备及其应用基础研究(2011DFA50530),326万元,技术骨干(第三);

8. 横向项目:高分子橡塑材料的开发&低摩擦支架结构的开发(苏州吉尼尔机械科技有限公司),20万,2020.4-2025.4,主持;

9. 横向项目:新型光固化预聚物及材料的开发(长兴电子(苏州)有限公司),15万,2018.6-2020.12,主持。


代表性论文:

66. In Situ Controlled Construction of Hierarchical Supramolecular Chiral Liquid-Crystalline Polymer Assembly. X. X. Cheng,W. Zhang*, X. L. Zhu et al.Angew. Chem. Int. Ed.2020, DOI: 10.1002/anie.202001657.

65. The construction of photoresponsive polymer particles with supramolecular helicity from achiral monomers by helix-sense-selective polymerization. X. X. Cheng,W. Zhang*, X. L. Zhu et al.Polym. Chem.2020, 10, 2089.

64. Different phase-dominated chiral assembly of polyfluorenes induced by chiral solvation: axial and supramolecular chirality. S. Li,W. Zhang*, X. L. Zhu et al.RSC Adv.2019, 9, 38257.

63. Aggregation-induced chiroptical generation and photoinduced switching of achiral azobenzene-alt-fluorene copolymer endowed with left- and right-handed helical polysilanes. H. L. Chen,W. Zhang*, X. L. Zhu et al.RSC Adv.2019, 9, 4849.

62. Synthesis and Photocontrolled Supramolecular Self-Assembly of Azobenzene-Functionalized Perylene Bisimide Derivatives. W. K. Ling,W. Zhang*, X. L. Zhu et al.Polymers2019, 11, 1143.

61. Design and Synthesis of a Cyclic Double-Grafted Polymer Using Active Ester Chemistry and Click Chemistry via A “Grafting onto” Method. S. S. Zhang,W. Zhang*, X. L. Zhu et al.Polymers2019, 11, 240.

60.刚性棒状手性聚硅烷诱导非手性超支化聚芴的超分子手性组装(特约专刊). 陈海玲,程笑笑,张伟*等,功能高分子学报2019, 32, 718.

59.手性低聚物/聚合物诱导非手性物质手性组装的研究进展(特约综述). 程笑笑,缪腾飞,张伟*等,功能高分子学报2019, 32, 647.

58.光诱导非手性聚合物的手性研究进展(特约综述). 殷露,缪腾飞,张伟*等,功能高分子学报2018, 31, 387.

57. Design and synthesis of a novel azobenzene-containing polymer both in the main- and side-chain toward unique photocontrolled isomerization properties. K. Wang,W. Zhang*, X. L. Zhu et al.Mater. Chem. Front.2018, 9, 5155.

56. Chirality Construction from Preferred π-π Stacks of Achiral Azobenzene Units in Polymer: Chiral Induction, Transfer and Memory. T. F. Miao,W. Zhang*, X. L. Zhu et al.Polymers2018, 10, 612.

55. Synthesis of a cyclic-brush polymer with a high grafting density using activated ester chemistry via the “grafting onto” approach. S. S. Zhang,W. Zhang*, X. L. Zhu et al.Polym. Chem.2018, 9, 5155.

54. The implementation of the catalytic Staudinger–Vilarrasa reaction in polymer chemistry as a highly efficient chemistry strategy. X. N. Zhao,W. Zhang*, X. L. Zhu et al.Polym. Chem.2018, 9, 4413.

53. Establishment of a molecular design to obtain visible-light-activated azoxy polymer actuators. Y. Chen,W. Zhang*, X. L. Zhu et al.Polym. Chem.2018, 9, 2438.

52. Chirality induction of achiral polydialkylfluorenes by chiral solvation: odd–even and side chain length dependence. Y. Zhao,W. Zhang*, X. L. Zhu et al.Polym. Chem.2018, 9, 2295.

51. Supramolecular Chirality Induced by Chiral Solvation in Achiral Cyclic Azo-containing Polymers: Topological Effects on Chiral Aggregation. L. Yin,W. Zhang*, X. L. Zhu et al.Polym. Chem.2018, 9, 769.

50. Recent advances in the construction of cyclicgrafted polymers and their potential applications. S. S. Zhang,W. Zhang*, X. L. Zhu et al.Polym. Chem.2018, 9, 677.

49. Effects of calcination temperature and heating rate on the photocatalytic properties of ZnO prepared by pyrolysis. L. L. He, Z. H. Wang*, W. Zhang* et al. J. Colloid Interface Sci.2018,509,448.

48. Fabrication of chiroptically switchable films viaco-gelation of a small chiral gelator with an achiral azobenzene-containing polymer. D. Yang,W. Zhang*, M. H. Liu et al. Soft Matter 2017,13,6129.

47. Rapid limonene-induced mirror symmetry breaking in achiral polyfluorene containing pendant crown ether groups: enhanced by ion complexation. J. J. Liu,W. Zhang*, X. L. Zhu et al. React. Funct. Polym. 2017,121, 76.

46. Circularly Polarized Light with Sense and Wavelengths To Regulate Azobenzene Supramolecular Chirality in Optofluidic Medium. L. B. Wang,W. Zhang*, X. L. Zhu et al.J. Am. Chem. Soc. 2017,139, 13218.

45. Chiral Solvation Induced Supramolecular Chiral Assembly of Achiral Polymers. Y. Zhao,W. Zhang* et al. Chapter 4 in “Molecular Self-assembly in Nanoscience and Nanotechnology”, Edited by Ayben Kilislioğlu and Selcan Karakuş, Publisher: InTech. 2017.

44. Helical screw sense bias in chiral polyfluorene stimulated bysolvent. Y. Zhao,W. Zhang*, X. L. Zhu et al.Chirality2017, 29, 107. 

43. A Green Platform for Preparation of the Well-DefinedPolyacrylonitrile:60Co γ-ray Irradiation-InitiatedRAFT Polymerization at Room Temperature. S. S. Zhang, W. Zhang*, X. L. Zhu et al.Polymers2017, 9, 26.

42. Induction of supramolecular chirality by chiralsolvation in achiral Azo polymers with differentspacer lengths and push–pull electronicsubstituents: where will chiral induction appear? L. Yin,W. Zhang*, X. L. Zhu et al.Polym. Chem.2017, 8, 1906. 

41. Supramolecular Chirality in Achiral Polyfluorene: Chiral Gelation, Memory of Chirality, and Chiral Sensing Property. Y. Zhao, W. Zhang*, X. L. Zhu et al.Macromolecules2016, 49, 3214.

40. Synthesis and Characterization of Visible-Light-Activated Azo Hyperbranched Polymers. L. B. Wang, W. Zhang*, et al. Polym. Chem.2016, 7, 5407.

39.手性溶剂诱导非手性物质手性的研究进展(特约综述).赵银,殷露,张伟*等,功能高分子学报2016, 29, 20.

38. Synthesis of diverse cyclic-brush polymers with cyclic polystyrene as a universal template via a grafting-from approach. S. S. Zhang, W. Zhang*, et al. Polym. Chem.2016, 7, 2112.

37. A strategy for tuning achiral main-chain polymersinto helical assemblies and chiral memorysystems. D. Yang, W. Zhang*, L. Zhang* and M. H. Liu* et al. Soft Matter2016, 12, 1170.

36. Preferential chiral solvation inducedsupramolecular chirality in optically inactivestar Azo polymers: photocontrollability, chiralamplification and topological effects. L. Yin, W. Zhang*, X. L. Zhu et al. Polym. Chem.2015, 6, 7045.

35. The Suzuki coupling reaction as a post-polymerizationmodification: a promising protocol for construction ofcyclic-brush and more complex polymers. Y. S. Wang, W. Zhang*, Z. B. Zhang*, X. L. Zhu* et al. Polym. Chem.2015, 6, 4669.

34. Photocontrollable induction of supramolecularchirality in achiral side chain Azo-containingpolymers through preferential chiral solvation. S. Q. Jiang, W. Zhang*, X. L. Zhu et al. Polym. Chem.2015, 6, 4230.

33. A Straightforward Protocol for the Highly Efficient Preparation of Main-Chain Azo Polymers Directly from Bisnitroaromatic Compounds by the Photocatalytic Process. L. B. Wang, W. Zhang*, X. L. Zhu et al.Macromolecules2015, 48, 1289.

32. Photon magic: chiroptical polarisation,depolarisation, inversion, retention and switchingof non-photochromic light-emitting polymersin optofluidic medium, M. Fujiki*, Y. Zhao, W. Zhang*, X. L. Zhu et al.Polym. Chem.2015, 6, 1627.

31. One-step pyrolytic synthesis of ZnO nanorods with enhancedphotocatalytic activity and high photostability under visible light andUV light irradiation. N. Huang, Z. H. Wang* and W. Zhang* et al. J Alloys Compd. 2015, 648, 919.

30. Supramolecular self-assembly and photovoltaic property of soluble fluorogallium phthalocyanine, J. Zhang, L. B. Wang, W. Zhang*, X. L. Zhu* et al. RSC Adv.2014, 4, 29485.

29. A novel azobenzene covalent organic framework,J. Zhang, L. B. Wang, W. Zhang*, X. L. Zhu* et al.CrystEngComm. 2014, 16, 6547.

28. Limonene induced chiroptical generation and inversion during aggregation of achiral polyfluorene analogs: structure-dependence and mechanism, L. B. Wang, W. Zhang*, X. L. Zhu et al.Polym. Chem.2014, 5, 2872.

27. A novel approach to synthesize polymers for potential photodynamic therapy: from benzenedinitrile to phthalocyanine, L. B. Wang, W. Zhang*, X. L. Zhu et al.Polym. Chem.2014, 5, 5920.

26. Chiroptical generation and amplification of hyperbranched p-conjugated polymers in aggregation states driven by limonene chirality, J. F. Liu, W. Zhang*, X. L. Zhu* et al.Polym. Chem.2014, 5, 784.

25. Preparation and Characterization of Solution Processable Phthalocyanine-Containing Polymers via a Combination of RAFT Polymerization and Post-Polymerization Modification Techniques, J. Zhang, L. B. Wang, W. Zhang*, X. L. Zhu* et al.J. Polym. Sci. Part A: Polym. Chem.2014, 52, 691.

24. Design and property of thermoresponsive core–shell fluorescent nanoparticles via RAFT polymerization and suzuki coupling reaction, Z. Y. Xing, J. Zhang, W. Zhang*, X. L. Zhu* et al.J. Polym. Sci. Part A: Polym. Chem.2013, 51, 4021.

23. Cooperative self-assembly and crystallization into fractal patterns by PNIPAM-based nonlinear multihydrophilic block copolymers under alkaline conditions, S. T. Sun, P. Y. Wu*, W. Zhang*, X.L. Zhu* et al. Polym. Chem.2013, 4, 5800.

22. Chiral Self-Assembly of Designed Amphiphiles: Influences on Aggregate Morphology, T. G. Barclay*, K. Constantopoulos, W. Zhang, M. Fujiki et al. Langmuir2013, 29, 10001.

21. Mirror Symmetry Breaking and Restoration within μm-Sized Polymer Particles in Optofluidic Media by Pumping Circularly Polarised Light, M. Fujiki*, W. Zhang*, X. L. Zhu* et al. RSC Adv. 2013, 3, 5213.

20. 溶剂手性转移法制备超支化共轭聚合物手性荧光纳米粒子. 张双双,刘江飞,张键,王来兵,张伟*,朱秀林*. 高分子学报20134426.

19. Effect of structural constraint on dynamic self-assembly behavior of PNIPAM-based nonlinear multihydrophilic block copolymers, P. Y. Wu*, W. Zhang*, X. L. Zhu et al. Soft Matter 2013, 9, 1807.

18. Facile one-pot/one-step technique for preparation of side-chain functionalized polymers: Combination of SET-RAFT polymerization of azide vinyl monomer and click chemistry. Q. Shen, W. Zhang*, X. L. Zhu* et al. J. Polym. Sci. Part A: Polym. Chem.2012, 50, 1120.

17. Unpolarized-Light-Driven Amplified Chiroptical Modulation Between Chiral Aggregation and Achiral Disaggregation of an Azobenzene-alt-Fluorene Copolymer in Limonene.W. Zhang*, K. Yoshida, M. Fujiki*. Macromolecules2011, 44, 5105.

16. Chiroptical Nanofibers Generated From Achiral Metallophthalocyanines Induced by Diamine Homochirality. W. Zhang*, M. Fujiki*. X. L. Zhu. Chem. Eur. J.2011, 17, 10628.

15. Synthesis and Aggregation Behaviors of Nonlinear Multiresponsive, Multihydrophilic Block Copolymers. W. D. Zhang, W. Zhang (Co-first Author), X. L. Zhu* et al. Macromolecules2011, 44, 3941.

14. Programmed High-Hole-Mobility Supramolecular Polymers from Disk-Shaped Molecules. W. Zhang*, K. Ochi, M. Fujiki* et al. Adv. Funct. Mater. 2010, 20, 3941.

13. Ambidextrous optically copper(II) phthalocyanine supramolecules induced by peripheral group homochirality. W. Zhang*, A. Ishimaru, M. Fujiki* et al. New J. Chem2010, 34, 2310.

12. Chlorodithiocarbamate Mediated RAFT Polymerization: A Novel Synthetic Method for ATRP Macroinitiators. W. Zhang, X. L. Zhu* et al.Macromol. React. Eng.2010, 4, 264.

11. SET-RAFT Polymerization of Progargyl Methacrylate and One-pot/One-step Preparation of Side-chain Functionalized Polymer via Combination of SET-RAFT and Click Chemistry. W. D. Zhang, W. Zhang (Co-first Author), X. L. Zhu* et al. Macromo. Rapid Commun.2010, 31, 1354.

10. Thermo-responsive Fluorescent Micelles from Amphiphilic A3B Miktoarm Star Copolymers Prepared via a Combination of SET-LRP and RAFT Polymerization. W. D. Zhang, W. Zhang (Co-first Author), X. L. Zhu* et al. J. Polym. Sci. Part A: Polym. Chem.2010, 48, 4268.

9. Preparation of Miktoarm Star-Block Copolymers PSn-b-PVAc4-n via Combination of ATRP and RAFT Polymerization. Y. S. Qiu, W. Zhang (Co-first Author), X. L. Zhu* et al. J. Polym. Sci. Part A: Polym. Chem.2010, 48, 5180.

8. Universal Xanthate-Mediated Controlled Free Radical Polymerizations of the ‘‘Less Activated’’ Vinyl Monomers. Y. F. Yan, W. Zhang (Co-first Author), X. L. Zhu* et al. J. Polym. Sci. Part A: Polym. Chem.2010, 48, 5206.

7. Fluorescent Properties of Poly(9-(4-vinylbenzyl)-9H-carbazole) via Nitroxide-mediated Living Free Radical Polymerization. W. Zhang, X. L. Zhu* et al.Eur Polym J.2008, 44, 3300.

6. Atom Transfer Radical Polymerization of Styrene Using Multifunctional Iniferter Reagents as Initiators. W. Zhang, X. L. Zhu* et al.Macromol. Symp.2008, 261, 23.

5. Atom Transfer Radical Polymerizations of Methyl Methacrylate and Styrene using Iniferter Reagent as Initiator. W. Zhang, X. L. Zhu* et al.J. Appl. Polym. Sci. 2007, 106, 230.

4. Synthesis of Well-defined Naphthalene and Photo-liable Group Labeled Polystyrene via ATRP. W. Zhang, X. L. Zhu* et al.J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 510.

3. Atom Transfer Radical Polymerization of Styrene using a Novel Initiator Ethyl 2-N,N-(diethylamino)dithiocarbamoyl-Butyrate. W. Zhang, X. L. Zhu* et al.J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 32.

2. Reversible Addition–Fragmentation Chain Transfer Polymerization of 2-Naphthyl Acrylate with 2-Cyanoprop- 2-yl 1-Dithionaphthalate as a Chain-Transfer Agent. W. Zhang, X. L. Zhu* et al.J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 2632.

1. Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate using a New Catalyst, Copper(II) N,N-Butyldithiocarbamate.W. Zhang, X. L. Zhu* et al. Macromol. Chem. Phys.2004, 205, 806.

(更新时间:2020年4月29日)