邹艳,博士。2016年18新利体育 获博士学位,2015年8月在日本东京大学Kazunori Kataoka课题组交流学习。现工作于河南大学-麦考瑞大学生物医学联合创新中心(http://bs.henu.edu.cn),主要研究方向为红细胞膜包裹仿生纳米药物用于肿瘤的靶向治疗。
代表性著作
1. Y. Zou, Y.H. Wei, G.L. Wang, F.H. Meng*, M.Y. Gao, and Z.Y. Zhong*. Nanopolymersomes with an ultrahigh iodine content for high-performance X-Ray computed tomography imaging in vivo. Advanced Materials 2017, DOI: 10.1002/adma.201603997.
2. Y. Zou, Y. Fang, H. Meng, F.H. Meng*, C. Deng, J. Zhang, and Z.Y. Zhong*. Self-crosslinkable and intracellularly decrosslinkable biodegradable micellar nanoparticles: A robust, simple and multifunctional nanoplatform for high-efficiency targeted cancer chemotherapy. Journal of Controlled Release 2016, 244, 326-335.
3. Y. Zou, F.H. Meng*, C. Deng, and Z.Y. Zhong*. Robust, tumor-homing and redox-sensitive polymersomal doxorubicin: A superior alternative to Doxil and Caelyx? Journal of Controlled Release 2016, 239, 149-158.
4. Y. Zou, F.H. Meng*, W.J. Yang, and Z.Y. Zhong*, Targeted hepatoma chemotherapy in vivo using galactose-decorated crosslinked pH-sensitive degradable micelles. Journal of Controlled Release 2015, 213, e125-e126.
5. Y. Zou, F.H. Meng*, C. Deng, R. cheng, and Z.Y. Zhong*. Galactose-installed photo-crosslinked pH-Sensitive degradable micelles for active targeting chemotherapy of hepatocellular carcinoma in mice. Journal of Controlled Release 2014, 193, 154-161.
6. W. Chen, Y. Zou, (co-first author), Z.Y. Zhong*, and R. Haag*. Cyclo(RGD)-decorated redox-responsive nanogels mediate targeted chemotherapy of integrin over-expressing human glioblastoma in vivo. Small 2016, DOI: 10.1002/**ll.201601997.
7. Y. Fang, Y. Jiang, Y. Zou, F.H. Meng*, J. Zhang, C. Deng, H.L. Sun, Z.Y. Zhong*, Targeted glioma chemotherapy by cyclic RGD peptide-functionalized reversibly core-crosslinked multifunctional poly(ethylene glycol)-b-poly(ε-caprolactone) micelles. Acta Biomaterialia 2017, DOI: 10.1016/j.actbio.2017.01.007.
8. N. Zhang, Y.F. Xia, Y. Zou, W.J. Yang, J. Zhang, Z.Y. Zhong*, F.H. Meng*, ATN-161 peptide functionalized reversibly crosslinked polymersomes mediate targeted doxorubicin delivery into melanoma-bearing C57BL/6 mice. Molecular Pharmaceutics 2016, DOI: 10.1021/acs.molpharmaceut.6b00800.
9. W.J. Yang, Y. Zou, F.H. Meng*, J. Zhang, R. Cheng, C. Deng, and Z.Y. Zhong*. Efficient and targeted suppression of human lung tumor xenografts in mice with methotrexate sodium encapsulated in all-function-in-one chimaeric polymersomes. Advanced Materials 2016, 28, 8234-8239.
10. J. Chen, Y. Zou, C. Deng*, F.H. Meng, J. Zhang, and Z.Y. Zhong*. Multifunctional click hyaluronic acid nanogels for targeted protein delivery and effective cancer treatment in vivo. Chemistry of Materials 2016, 28, 8792-8799.
11. L. Lu, Y. Zou, W.J. Yang, F.H Meng*, C. Deng, R. Cheng, and Z.Y. Zhong*, Anisamide-decorated pH-sensitive degradable chimaeric polymersomes mediate potent and targeted protein delivery to lung cancer cells. Biomacromolecules 2015, 16 (6), 1726–1735.
12. J.L. Lv, H.L. Sun, Y. Zou, F.H. Meng, A. A. Dias, M. Hendriks, J. Feijen and Z.Y. Zhong*, Reduction degradable amino acid-based poly-(ester amide)-graft-galactose copolymers: facil synthesis, self-assembly, and hepatoma targeting doxorubicin delivery. Biomaterials Science, 2015, 3, 1134-1146.
13. X. Li, W.J. Yang, Y. Zou, F.H. Meng*, C. Deng, R. Cheng, and Z.Y. Zhong*, Efficacious delivery of protein drugs to prostate cancer cells by PSMA-targeted pH-responsive chimaeric polymersomes. Journal of Controlled Release 2015, 220, 704-714.
14. W. Chen, Y. Zou, F.H. Meng, R. Cheng, C. Deng*, J. Feijen and Z.Y. Zhong*, Glyco-nanoparticles with sheddable saccharide shells: a unique and potent platform for hepatoma-targeting delivery of anti-cancer drugs. Biomacromolecules 2014, 15, 900-907.
15. L.L. Wu, Y. Zou, C. Deng*, R. Cheng, F.H. Meng, Z.Y. Zhong*, Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions. Biomaterials 2013, 34, 5262-5272.
16. W. Chen, Y. Zou, J.N. Jia, F.H. Meng, R. Cheng, C. Deng, J. Feijen, and Z.Y. Zhong*, Functional poly(ε-caprolactone)s via copolymerization of ε-caprolactone and pyridyl disulfide-containing cyclic carbonate: controlled synthesis and facile access to reduction-sensitive biodegradable graft copolymer micelles. Macromolecules 2013, 46, 699−707.